
Review began 11/07/2024 
Review ended 12/02/2024 
Published 12/04/2024

© Copyright 2024
Swain et al. This is an open access article
distributed under the terms of the Creative
Commons Attribution License CC-BY 4.0.,
which permits unrestricted use, distribution,
and reproduction in any medium, provided
the original author and source are credited.

DOI: https://doi.org/10.7759/s44389-024-
02268-y

Enhancing Stroke Prediction Using LightGBM
With SMOTE-ENN and Fine-Tuning: A
Comprehensive Analysis
Kaliprasanna Swain   , Tan Kuan Tak  , Kamal Upreti  , Pravin R. Kshirsagar  , Sivaneasan Bala
Krishnan  , Ramesh Chandra Poonia  , Sumya Ranjan Nayak  , Mihir Narayan Mohanty 

1. Electrical and Electronics Engineering, Singapore Institute of Technology, Singapore, SGP 2. Electronics and
Telecommunication Engineering, Trident Academy of Technology, Bhubaneswar, IND 3. Computer Science, CHRIST
University, Delhi NCR, Ghaziabad, IND 4. Computer Science, JD College of Engineering & Management, Nagpur, IND
5. Electrical Engineering, Singapore Institute of Technology, Singapore, SGP 6. Computer Engineering, KIIT University,
Bhubaneswar, IND 7. Electronics, ITER, SoA University, Bhubaneswar, IND

Corresponding author: Kaliprasanna Swain, kaleep.swain@gmail.com

Abstract
Introduction: Accurately classifying stroke cases is a significant challenge in health care, as early detection
can reduce severe complications and improve outcomes. Stroke datasets are usually imbalanced, with non-
stroke cases in the majority, which poses a challenge to traditional machine learning algorithms and usually
results in low stroke detection rates. This research proposes an advanced approach using Light Gradient-
Boosting Machine (LightGBM) with Synthetic Minority Over-sampling Technique-Edited Nearest Neighbors
(SMOTE-ENN) to address this imbalance. Further optimization was performed using RandomizedSearchCV
with LightGBM, achieving an area under the curve (AUC) of 0.946, higher than any of the baselines.

Methods: Class imbalance needed to be addressed first using SMOTE-ENN, which combines SMOTE with
ENN for the creation of a balanced training set to be generalized well. We then used the LightGBM
algorithm, which works quite efficiently with large datasets, and optimized it with RandomizedSearchCV.

Results: The highest performance of LightGBM was achieved with an AUC of 0.946, improving precision,
recall, F1 score, and receiver operating characteristic curve performance. Therefore, LightGBM
demonstrates high sensitivity and specificity for stroke detection compared to baseline models.

Conclusion: The integration of SMOTE-ENN with LightGBM and extensive hyperparameter optimization
provides a robust framework for predicting stroke in imbalanced datasets. This approach not only enhances
model performance but also proves to be a potential solution for other medical prediction problems
significantly affected by class imbalance.

Categories: Image Processing and Analysis, IoT Applications, Data Science Methodologies
Keywords: stroke prediction, imbalance data set, smote-enn, lightgbm, randomizedsearchcv

Introduction
Prediction of a stroke is one of the highly important tasks in healthcare, as early detection can reduce the
burden of serious complications and significantly improve outcomes [1]. However, accurate prediction of
strokes is often compromised by inherent challenges, such as class imbalance in datasets [2]. These
datasets are biased towards the majority class, which poses an obstacle for traditional machine learning
models in identifying potential stroke cases.

Prediction accuracy has become a non-negotiable aspect of medical diagnosis, where the correct prediction
of life-threatening conditions, such as stroke, is of utmost importance. Advanced models like this can enable
timely medical intervention, saving lives and reducing disabilities in the long term [3]. This research,
therefore, falls within the context of improving the predictive performance of machine learning algorithms
when faced with imbalanced data, which is a common occurrence in most medical datasets, given the lower
prevalence of positive cases (stroke) compared to negative cases.

The most common problem in machine learning is class imbalance, where instances of one class
are reasonably higher in count than those of the other [4]. This creates a situation where models are biased
towards the majority class, leading to poor identification of the minority class, which is often critical for
detection in medical applications. While many traditional techniques, including Synthetic Minority Over-
sampling Technique (SMOTE), may have artificially balanced these imbalances in the dataset, most of these
methods fail in complex situations such as stroke prediction [5,6]. This paper, therefore, proposes an
enhanced integrated approach: balancing class imbalances using SMOTE with Edited Nearest Neighbors
(ENN) for the Light Gradient-Boosting Machine (LightGBM) algorithm and performing thorough tuning of
model parameters.
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The analysis of various machine learning models in class imbalance challenges suggests that achieving
high precision and recall, particularly for the minority class, is difficult. Techniques such as SMOTE fail
completely in this case, as it could be noted that many models perform at a low precision, recall, and F1
score, especially when compared with the null accuracy-random forests and gradient boosting among them.
This points to a critical gap in the existing methodology, as existing solutions are barely able to provide
balancing factors between different metrics in highly imbalanced datasets. This paper highlights the
development and tuning of a robust machine learning model designed to efficiently address the class
imbalance problem. Using advanced techniques such as SMOTE-ENN, the work aims to improve the
model's performance in correctly identifying and classifying minority classes, enabling the model to balance
precision, recall, and F1 score. In conference or journal submissions, the goal is to prove that such
techniques make an actual difference in terms of the whole predictive power/reliability of a model in real-life
applications each involving data imbalance.

Related work
Rapid advancements have been made in stroke prediction using machine learning, driven by the
challenging issue of imbalanced data and the demand for accurate predictive models. The contributions are
listed chronologically in Table 1, considering studies from 2019 to 2024, based on references [7-16]. They
discuss the algorithmic methodologies employed, issues in handling class imbalances, and various
optimizations of machine learning models to improve predictive accuracy for stroke prediction. The contents
of each entry capture the main messages from all included studies, highlighting different methodologies and
their impact on stroke identification in healthcare practice.
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Ref.
No.

Authors Year Key Contributions Limitations

7 Liu et al. 2019
Introduced a hybrid ML method employing random forest and a DNN
for optimizing stroke prediction on an imbalanced dataset, Overall
accuracy = 71.6%.

Limited generalizability due to reliance on specific
hybrid models; lacks robust handling of noise in data.

8
Wu and
Fang

2020
Examined ML models' performance on imbalanced data among older
Chinese, using techniques like SMOTE to improve accuracy,
Accuracy = 78%.

Focused only on a specific demographic (older
Chinese); performance metrics beyond accuracy not
detailed.

9
Tazin et
al.

2021
Proposed robust learning approaches for stroke prediction, favoring
random forest for its high performance.

Limited evaluation of other advanced resampling
techniques; lack of hyperparameter optimization.

10 Butt et al. 2022
Applied SMOTE Upsampling and optimized feature selection for
predicting heart failure, methodologically similar to stroke prediction,
accuracy = 84.11%.

Focused on heart failure, not directly validated for
stroke prediction; potential overfitting with SMOTE.

11
Santos et
al.

2022
Used AIS and decision trees via genetic programming for stroke
prediction, addressing class imbalance innovatively.

Complexity of genetic programming may hinder
scalability; limited comparative analysis with other
methods.

12
Biswas et
al.

2022
Explored multiple classifiers for stroke prediction, focusing on ROS
to correct data imbalances.

ROS may lead to over-representation of minority
class; no in-depth exploration of ensemble methods.

13
Wang et
al.

2023
Explored AutoML and RUS for improving stroke prediction models in
imbalanced datasets.

AutoML's black-box nature limits interpretability; RUS
can lead to loss of informative data in majority class.

14
Dahiya et
al.

2023
Examined gradient boost methods (XGBoost, LightGBM, CatBoost)
highlighting the role of hyperparameter tuning and feature
importance.

Limited to boosting algorithms; no exploration of
resampling techniques for class imbalance.

15
Ushasree
et al.

2024
Demonstrated a stacking methodology using various classifiers to
enhance stroke prediction accuracy.

Stacking models can be computationally expensive
and prone to overfitting without careful tuning.

16 Merdas 2024
Utilized EMS (Elastic Net–MLP–SMOTE) model to increase the
performance of the model.

EMS model’s performance may not generalize well to
larger, diverse datasets; high reliance on SMOTE’s
synthetic data.

TABLE 1: Summary of literature
DNN: Deep Neural Network; ML: Machine Learning; SMOTE: Synthetic Minority Over-sampling Technique; AIS: Artificial Immune Systems; ROS: Random
Oversampling; AutoML: Automated Machine Learning; RUS: Random Undersampling; LightGBM: Light Gradient-Boosting Machine

The objective of our study is to extend the current methods that predict stroke risk, using unique machine
learning approaches aimed at addressing class imbalances in medical datasets - a problem encountered
across most such scenarios. Our study benefits from using SMOTE-ENN and LightGBM, respectively, to
improve the sensitivity of stroke prediction models that may suffer under skewed data distribution in
traditional methods. Unlike conventional approaches which could present poor performance caused by
highly imbalanced instances among classes, our work conducts a sophisticated combination of SMOTE and
ENN together with classifying algorithm-specific improvements for approaching balanced samples on both
sides - positive side as well as negative side. This adequately enhances not only specificity but also
simultaneously maintains or even increases sensitivity aspects toward predicting future stroke outcomes.

This combined approach of upsampling and downsampling not only helps balance the guided majority
classes but also improves classification results for minority instances, as these smaller class examples are
critical for early stroke prediction. The use of RandomizedSearchCV for exhaustive hyperparameter tuning
further optimizes the model's performance and leads to a first-of-its-kind attempt at this problem. Positioning
our work within the context of broader research reveals that, while similar solutions exist, none tackle class
imbalance with the same precision using advanced resampling and model optimization as we have done
here - establishing a versatile scaffold adaptable to any imbalanced medical prediction scenario.

Materials And Methods
Materials
HEALTH 10650 is the dataset used in this study, a healthcare dataset focused on stroke prediction. It
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comprises 5,110 instances with 12 mixed-type features. Initially released as a medical research project, its
purpose is to determine what features affect the likelihood of an individual experiencing a stroke. The
dataset is used in binary classification, where 1 indicates a stroke (identified by MRI) and 0 indicates no
stroke. It includes demographic health attributes such as age, gender, hypertension, heart disease, BMI, and
average glucose level, along with lifestyle factors like smoking status and work type. The proposed
sequential diagram for this work is shown in Figure 1.

FIGURE 1: Sequence diagram for the proposed work
LightGBM: Light Gradient-Boosting Machine; SMOTE-ENN: Synthetic Minority Over-sampling Technique-Edited
Nearest Neighbors: AUC: Area Under the Curve

Preprocessing
Data preprocessing was performed before the analysis. Missing values, particularly in the BMI column, were
handled through mean imputation to ensure completeness. Categorical variables such as gender,
ever_married, work_type, residence_type, and smoking_status were converted into numerical format using
one-hot encoding, making them suitable for machine learning algorithms. Similarly, numerical features were
normalized using Min-Max scaling, setting the data within a fixed range so that all input variables were
equally treated during training. The dataset was split into training and testing sets with an 80-20 split to
measure model performance on new, unseen data.

Feature engineering
These techniques further enhanced stroke prediction with these models. In feature transformation and
aggregation, polynomial features were generated for attributes such as age, avg_glucose_level, and BMI to
uncover nonlinear relationships within the data. Outlier detection and removal were performed using
interquartile range analysis, particularly for features like age and BMI that could contain extreme values,
which might skew model predictions. Recursive feature elimination enabled dimensionality reduction,
helping to select informative features for efficient models. Given the class imbalance in the stroke target
variable, synthetic features were developed using SMOTE. This oversampled the minority class (patients
who had a stroke), making the dataset more balanced and helping the model generalize better from these
instances.

Experimental setup
The dataset was split such that 80% goes to the training set and 20% for testing, so that model testing
could be done on unseen data. It can be observed that the models were trained on the training set, while in
contrast, the testing set was used to assess the performance. In order to promote model generalization and
avoid complex overfitting of the models, the training data was divided based on a five-fold cross-validation
strategy. Performance metrics to be measured included accuracy, precision, recall, F1 score, and area
under the curve (AUC) of the receiver operating characteristic (ROC) curve to ensure that all analyses were
well rounded. These metrics would provide further detail of model performance, particularly in a context
where data is imbalanced, and examination based on accuracy may not be good enough.

Baseline algorithm performance on imbalanced data
First of all, the analysis was done to see how well conventional machine learning models perform on the
imbalanced dataset. The models were chosen for this purpose because logistic regression, random forest,
and gradient boosting are very common in classification. It was about setting up a baseline in performance
that could then be improved upon using advanced techniques. 

These results are disappointing, as can be seen in Figure 2 and Table 2; this is particularly the case when
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considering how the imbalanced data was handled. The dataset was highly skewed, where the majority
class occupied 95% of all instances, giving a null accuracy of 95%. That said, none of the models
performed satisfactorily. In fact, the worst performance was that of the random forest model, which almost
showed zero precision and recall for the minority class in its real and utter failure to predict instances from
that class correctly. Indeed, all models had this result consistently, as told by the low F1 scores and AUC
values.

FIGURE 2: Confusion matrix for baseline algorithms

 

Classifier Accuracy Precision Recall F1 Score AUC

Logistic Regression 0.745597 0.160959 0.758065 0.265537 0.854032

Decision Tree 0.924658 0.317073 0.209677 0.252427 0.590255

Random Forest 0.939335 0 0 0 0.804024

Gradient Boosting 0.940313 1 0.016129 0.031746 0.827797

Support Vector Machine 0.74364 0.155172 0.725806 0.255682 0.817776

K-Nearest Neighbors 0.937378 0.25 0.016129 0.030303 0.645657

Naive Bayes 0.342466 0.084469 1 0.155779 0.835786

TABLE 2: Performance analysis of baseline classifiers
AUC: Area Under the Curve

Figure 3 compares all these models, indeed, showing that even though the logistic regression and gradient
boosting performed well - training AUCs of 0.854032 and 0.827260, respectively - their overall performance
was still abysmal. Their precision and recall were way below accepted values, especially for the minority
class. That pointed to a crucial limitation of the baseline algorithms: they could tell the classes apart
somehow - as reflected in the AUC scores - but totally failed to handle the class imbalance issue, since
their predictive performance was far from good on the minority class. This clearly showed from the analysis
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that there was a need for the adoption of more sophisticated techniques that could surmount the adverse
effects brought about by class imbalance; thus, the next phase of the study implemented and evaluated
resampling techniques to improve model performance.

FIGURE 3: ROC curve for baseline algorithms
ROC: Receiver Operating Characteristic; AUC: Area Under the Curve

Application of SMOTE for dataset balancing
To handle this gap in the baseline models, we developed SMOTE. One of the well-accepted methods for
generating synthetically prepared samples of the minority class to balance out the dataset is SMOTE. The
idea behind using SMOTE is that increasing the representation of the minority class would allow the models
to learn from a more balanced distribution of the data. The models were then evaluated again after over-
sampling with SMOTE. As shown in Figures 4 and 5, after the use of SMOTE, there is a considerable
improvement concerning the classification of the minority class. Logistic regression had notably better recall,
which in fact means the model was much more sensitive to finding the instances of a minority class. Logistic
regression AUC value increased, which means an improved capability to distinguish between the two
classes. With the improvements, challenges still remained. Table 3 depicts an illustration where, even
though the recall considerably improved, precision did not improve proportionately. That is to say, while the
models improved at detecting the minority class, there was still a leaning toward false alarms. Especially, in
the case of the gradient boosting model, while improving in AUC, it struggled to balance precision and
recall.
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FIGURE 4: Confusion matrix for baseline algorithms after applying the
SMOTE
SMOTE: Synthetic Minority Over-sampling Technique
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FIGURE 5: ROC for baseline algorithms after applying the SMOTE
ROC: Receiver Operating Characteristic; SMOTE: Synthetic Minority Over-sampling Technique; AUC: Area Under
the Curve

Classifier Accuracy Precision Recall F1 Score AUC

Logistic Regression 0.740705 0.167213 0.822581 0.277929 0.851008

Decision Tree 0.848337 0.133858 0.274194 0.179894 0.579805

Random Forest 0.901174 0.157895 0.145161 0.151261 0.788248

Gradient Boosting 0.835616 0.180723 0.483871 0.263158 0.793145

Support Vector Machine 0.793542 0.159817 0.564516 0.24911 0.784157

K-Nearest Neighbors 0.820939 0.137725 0.370968 0.208873 0.628663

Naive Bayes 0.337573 0.083897 1 0.154806 0.83377

TABLE 3: Outcomes for baseline algorithms after applying the SMOTE
AUC: Area Under the Curve; SMOTE: Synthetic Minority Over-sampling Technique

Enhanced resampling with SMOTE-ENN
In order to extend performance and balance the precision and recall of the model, we utilized the SMOTE-
ENN technique. SMOTE-ENN is an extension of SMOTE, combined with ENN. While SMOTE focuses on
generating synthetic examples of the minority class, ENN removes noisy or ambiguous examples in both
the minority and majority classes. The dual approach here in this case balances the dataset, cleans it, and
hence reduces the chance of a model learning from misleading data points. 

The results over Figure 6 indicate that the application of SMOTE-ENN had a profound impact on model
performance. The LightGBM model, in particular, showed marked improvements across all metrics. The
AUC increased to 0.9330, and there was a balanced enhancement in both precision and recall, which led to
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a significant improvement in the F1 score. This suggests that the model was not only better at identifying
the minority class but also more accurate in doing so, reducing the rate of false positives. The fine-tuning of
the LightGBM model further optimized its performance. By adjusting hyperparameters through grid search,
we were able to achieve an AUC of 0.9457, as shown in Figure 7. This fine-tuning process also improved
recall and F1 scores, particularly for the minority class, demonstrating that the model became more adept at
handling the nuances of the imbalanced dataset.

FIGURE 6: Receiver operating characteristic curve for LightGBM
algorithm after applying SMOTE-ENN
LightGBM: Light Gradient-Boosting Machine; SMOTE-ENN: Synthetic Minority Over-sampling Technique-Edited
Nearest Neighbors: AUC: Area Under the Curve

FIGURE 7: Receiver operating characteristic curve for LightGBM
algorithm after fine tune
AUC: Area Under the Curve; LightGBM: Light Gradient-Boosting Machine

Visualizing model performance
The following models have been developed in order to compare the comprehensive performance of models,
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and then several performance curves were produced and analyzed:

Confusion Matrix: Figure 8 illustrates the detailed information on the model prediction and the numbers of
true positives, true negatives, false positives, and false negatives. The balance between sensitivity and
specificity is much better for the model LightGBM when using the SMOTE-ENN technique in the data
preprocessing, since it reduces the number of false negatives as low as possible and, at the same time, it
holds the reasonable rate of false positives low.

FIGURE 8: Confusion matrix of LightGBM
LightGBM: Light Gradient-Boosting Machine

Threshold vs. F1 Score: Figure 9 depicts that on changing the decision threshold, there is a variation in the
F1 score. This will be important to be able to understand how the changes in thresholds will affect the
balance between precision and recall. The optimal threshold at which LightGBM best shows its value of F1
score gives the best trade-off between precision and recall.
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FIGURE 9: F1 score vs. threshold

Calibration Curve: Figure 10 shows the calibration curve that gives an idea about the match between the
predicted probabilities and actual outcomes concerning the LightGBM model. A well-calibrated model
should give a curve that is close to the diagonal, reflecting that the predicted probabilities are accurate
representations of the true likelihood of an event. Application of SMOTE-ENN helped in aligning the
predicted probabilities closer to this ideal, demonstrating improved calibration.

FIGURE 10: Calibration curve
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FIGURE 11: Precision-recall curve
PR: Precision-Recall; AUC: Area Under the Curve

Precision-Recall Curve: Figure 11 is a precision-recall curve that gives a good view of the trade-off between
precision and recall. This curve is informative, especially in datasets where there is class imbalance,
because precision and recall provide more useful insight compared to accuracy alone. In those cases,
LightGBM was able to sustain a better balance between precision and recall after the application of
SMOTE-ENN - a very essential thing for keeping the false positives as low as possible while capturing the
majority of positive cases.

Cumulative Accuracy Profile (CAP) Curve: The CAP curve in Figure 12 emphasizes how well an
improvement in true positives can be captured with fewer false positives. This is further solidified by how
distinct the LightGBM model CAP curve outperforms those of the baseline models after applying the
advanced resampling technique.
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FIGURE 12: Cumulative accuracy profile curve

Learning Curve: Figure 13 presents the learning curve of the LightGBM model, which generally reflects how
model performance increases with more training data. The learning curve illustrates that with the especially
applied SMOTE-ENN, the LightGBM model kept learning well from the data without significant overfitting
and, hence, showed good generalization on new data.

FIGURE 13: Learning curve
AUC: Area Under the Curve

Lift and Gain Chart: Figure 14 shows the gain and lift chart, which details how well the model is performing
in predicting true positives. It is observed that LightGBM, after performing SMOTE-ENN, has significantly
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enhanced the gain and lift, hence ranking positive instances higher in order to provide actionable insights.

FIGURE 14: Gain and lift chart

These together provide a full evaluation of the performance of the models involved and, more importantly,
the efficiency of SMOTE-ENN in bolstering the performance of LightGBM on imbalanced data. Excellent
results depicted in confusion matrix, F1 score vs. threshold, calibration curve, precision-recall curve, CAP
curve, learning curve, and gain and lift charts consolidate the idea of advanced resampling techniques being
employed toward the construction of strong predictive models in difficult data conditions.

Results
Table 4 provides a metrics comparison (baseline vs. SMOTE-ENN with LightGBM), and Figure 15 presents
an ROC curves comparison to enhance comprehension of the entire article. Table 5 presents the
comparison among some models performing with SMOTE to deal with an imbalance for which accuracy is
measured. Liu et al. [7] presented a model, in 2019, with an accuracy of 71.6%. Wu and Fang [8], in 2020,
outperformed the previous entry with an accuracy of 78%. Butt et al. [10], in 2022, achieved 84.11%
accuracy, outweighing previous tasks. A model is proposed here that, in combination with 2024 SMOTE-EN
with LightGBM, greatly outperforms previous works, reaching an accuracy of 95.8%. This means that great
improvements can come forth when advanced techniques are incorporated for handling imbalanced
datasets. The data presented in this study are available at the following link:
https://www.kaggle.com/datasets/fedesoriano/stroke-prediction-dataset.
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FIGURE 15: Metrics comparison using ROC curves (baseline vs.
SMOTE-ENN with LightGBM)
ROC: Receiver Operating Characteristic; SMOTE-ENN: Synthetic Minority Over-sampling Technique-Edited
Nearest Neighbors; LightGBM: Light Gradient-Boosting Machine

Model Accuracy Precision Recall F1 Score AUC

Logistic Regression 0.746 0.161 0.758 0.266 0.854

Decision Tree 0.925 0.317 0.21 0.252 0.59

Random Forest 0.939 0 0 0 0.804

Gradient Boosting 0.94 1 0.016 0.032 0.828

LightGBM + SMOTE-ENN 0.958 0.853 0.917 0.884 0.946

TABLE 4: Metrics comparison (baseline vs. SMOTE-ENN with LightGBM)
AUC: Area Under the Curve: SMOTE-ENN: Synthetic Minority Over-sampling Technique-Edited Nearest Neighbors; LightGBM: Light Gradient-Boosting
Machine
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Ref. No. Authors Year Accuracy

[7] (SMOTE) Liu et al. 2019 71.6

[8] (SMOTE) Wu and Fang 2020 78

[10] (SMOTE) Butt et al. 2022 84.11

[16] EMS (Elastic Net–MLP–SMOTE) Merdas 2024 95

Our Model (SMOTE-ENN- LightGBM)  2024 95.8

TABLE 5: Performance comparison
SMOTE-ENN: Synthetic Minority Over-sampling Technique-Edited Nearest Neighbors; LightGBM: Light Gradient-Boosting Machine

Discussion
These results and visualizations collectively highlight the challenges and solutions associated with
imbalanced datasets. Initial baseline models, while efficient in their foundation in balanced scenarios, could
not suffice in this context given the severe imbalance between the positive and negative classes. This is
clearly reflected by the low precision, recall, and F1 scores of these models; the random forest model failed
miserably in correctly classifying instances of the minority class. SMOTE application did alleviate some of
these issues by increasing the recall of the models but at the cost of precision. The justification behind this
was that the models became more sensitive in terms of detecting the minority class but created more false
positives in the process. This trade-off demonstrated the need for a more refined approach to balance these
critical metrics.

This was achieved particularly well by the SMOTE-ENN technique. By their oversampling of the minority
class and removal of noisy data points through ENN, the SMOTE-ENN cleaned up and balanced the
dataset. The results showed that in performance metrics and visualizations, the LightGBM model coupled
with SMOTE-ENN yielded a better balance between precision and recall. The increased model AUC,
combined with its performance on the precision-recall and CAP curves, underlines its efficiency in handling
the imbalanced dataset. The importance of SMOTE-ENN now is that, not only was it capable of cleaning
noise, but it also balanced the classes. This allowed generalization for the LightGBM model and reduced
chances of overfitting to the minority class instances, hence increasing the overall robustness of the model.
This enhancement is particularly pertinent in health care, where false positives and false negatives could be
associated with significant consequences. Compared to the other models in the experiment, the tuned
LightGBM model after SMOTE-ENN reaches an overall better balance between sensitivity and specificity,
hence a reliable and efficient system that could be of great value in the field for making predictions of rare
events like strokes.

Conclusions
This work demonstrated the effectiveness of the LightGBM algorithm coupled with the SMOTE-ENN
technique to handle class imbalance problems in stroke prediction datasets. Our proposed approach not
only boosted sensitivity and specificity in predictive models but also outperformed traditional methods, as
reflected by improved AUC, precision, recall, and F1 scores. Furthermore, with RandomizedSearchCV, the
model was further tuned for better hyperparameter optimization that resulted in robust and reliable
forecasts. This is novel, hence setting a new standard for the models developed for stroke prediction,
especially in handling imbalanced datasets as are commonly found within medical diagnosis contexts. 

In the future, several ways of research are open. Testing the scalability and adaptability with bigger and
more diverse datasets would consolidate the model even more across various demographic and regional
boundaries. Further, other advanced machine learning algorithms and hybrid models could also be explored
in the search for ever-better methods to handle class imbalances. This may extend our approaches to other
medical conditions that also have challenges of data imbalance, hence extending the wide impact on
healthcare. Finally, integrating real-time processing of data and embedding these models into clinical
decision support systems could enable actionable insights at the point of care.
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