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Abstract

The field of arrhythmia detection and cardiovascular health monitoring is rapidly changing due to
wearable technology. With a focus on developments in flexible materials, sensor integration, and
electronic design for ongoing arrhythmia monitoring, this review offers a thorough examination of both
established and new wearable sensor technologies. The article describes both commercial and
experimental devices, such as textile-based, patch, and wrist-worn platforms, emphasizing their
performance in clinical and real-world settings as well as their sensing modalities, including bioelectrical,
optoelectrical, and mechanoelectrical techniques. The integration of machine learning and artificial
intelligence (AI) algorithms is given special attention because it greatly improves wearable monitors'
clinical utility, predictive power, and diagnostic accuracy. We conducted this systematic review of case
studies, focusing on the use of deep learning to analyze photoplethysmography and electrocardiogram
data, and their impact on earlier detection and improved management of atrial fibrillation and other
arrhythmias.

We performed a systemic review analyzing 58 studies for the period of 2018-2025 over the issues of data
security, regulatory approval, signal fidelity, user adherence, and sensor ergonomics. In order to enhance
long-term wearability and user comfort, the review also looks at the market environment, legal
frameworks, and advancements in material science, including textile-integrated graphene electrodes and
epidermal electronics. The importance of interoperable device architectures, strong privacy protection
that complies with international standards, and the ongoing development of Al-driven analytics for real-
time decision support in healthcare are highlighted as future research directions. The purpose of the
synthesis is to direct researchers, engineers, and clinicians toward the upcoming generation of patient-
centered, intelligent wearable technologies for arrhythmia detection.

Categories: Al applications, Bioinformatics Algorithms, Health Informatics
Keywords: wearable devices, sensors, artificial intelligence (ai) in healthcare, real-time systems, cardiac arrythmia

Introduction And Background

Arrhythmia encompasses any deviation from normal heart rate or rhythm, presenting as faster, slower, or
irregular cardiac patterns. While many arrhythmias remain asymptomatic and clinically insignificant,
quiet a few manifest with palpitations, chest discomfort, dyspnoea, or syncope, potentially life-
threatening complications [1]. The integration of artificial intelligence (AI) technology in wearable
devices represents a paradigm shift toward continuous monitoring and early detection of arrhythmic
events, utilizing data streams including heart rate, rhythm patterns, and activity levels [2].

Recent advances in AI-driven arrhythmia detection through wearable devices have leveraged
photoplethysmography (PPG), single-lead electrocardiography, and sophisticated machine learning
algorithms [3]. Current clinical practice relies on electrocardiograms (ECGs) or Holter monitoring for
arrhythmia identification. Traditional Holter devices continuously record 12-lead ECG activity for 24-48
hours or up to one week, while implantable loop recorders provide 2-3 years of automated cardiac rhythm
surveillance [4]. However, these approaches have limitations in capturing intermittent or asymptomatic
arrhythmic episodes, creating opportunities for continuous wearable monitoring solutions. Experimental
setups despite high accuracy rates in curated datasets in controlled conditions, in real-world clinical
environments, tend to decline due to diverse patient populations, signal noise, varying device quality, and
heterogeneous settings. This reduces sensitivity and specificity in actual practice with false alerts and
alert fatigues. The barriers in workflow adaptation, interoperability with existing electronic health
records, real-time data processing capabilities, and clinician acceptance hinder the transition from
promising experimental tools to clinical use.
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This comprehensive review addresses the current state and future prospects of wearable sensors in
arrhythmia detection, focusing on flexible materials, advanced electronics, and Al integration. We
examine bioelectrical, optoelectrical, mechanoelectrical, and ultrasonic sensing techniques while
analysing device performance, clinical applications, and implementation challenges including privacy,
regulatory compliance, and user acceptance.

Review

Methodology
Search Strategy

A systematic literature search was conducted across PubMed, IEEE Xplore, ScienceDirect, and Google
Scholar databases. The search covered publications from January 1, 2015, to October 31, 2025. The search
strategy used the following keyword combinations: ("wearable devices" OR "wearable sensors" OR
"wearable technology") AND ("arrhythmia detection" OR "cardiac monitoring" OR "heart rhythm") AND
("artificial intelligence" OR "machine learning" OR "deep learning") AND ("electrocardiogram” OR
"photoplethysmography" OR "ECG" OR "PPG").

Inclusion and Exclusion Criteria
Inclusion criteria ensured the selection of scientifically rigorous and clinically relevant studies:
« Peer-reviewed original research and clinical validation studies published within the specified date range

« Focus on wearable devices or sensors designed for cardiac arrhythmia detection or continuous heart
rhythm monitoring

« Studies employing AI, machine learning, or deep learning algorithms for cardiac signal analysis
« Technical papers detailing sensor design and algorithm development with validation components
Exclusion criteria addressed potential biases and ensured data quality:

« Studies utilizing only invasive cardiac monitoring technologies, as this review focuses on non-invasive
wearables

« Research lacking clear methodology, validation, or lacking ethical approval evidence

« Non-English language publications were excluded due to resource constraints but abstracts were
scanned to identify critical studies; this limitation is acknowledged as a potential source of language bias

« Articles with clinical validation sample sizes under 10 participants were excluded to ensure statistical
robustness and reliability of findings

« Review articles without original data (except those included for contextual background) and case reports
without systematic analysis

Study Selection and Data Extraction

The initial search yielded 342 potentially relevant studies. After duplicate removal and screening against
the inclusion and exclusion criteria by two independent reviewers, 58 studies were included for detailed
analysis. Any disagreements were resolved by consensus or third-party adjudication.

Data extracted from each study included study design and population characteristics; wearable device
type, sensor modality, and specifications; Al/machine learning algorithms utilized, including training,
validation methods, and performance metrics; clinical outcomes, including diagnostic accuracy measures
(sensitivity, specificity, positive predictive value); and usability, patient adherence, and integration
aspects where available

Review of current technologies in wearable devices

Evolution of Wearable Cardiac Monitoring

The landscape of wearable cardiac monitoring has evolved from simple heart rate tracking to
sophisticated arrhythmia detection systems. Contemporary wearables including smartwatches, rings, and
patch-based devices have achieved widespread adoption due to their ease of use and continuous
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monitoring capabilities [5]. Despite widespread consumer adoption, clinical acceptance remains
contingent on rigorous regulatory approval processes that require comprehensive validation of both
diagnostic accuracy and patient safety. However, regulatory approval for clinical applications remains
challenging, requiring rigorous validation of diagnostic accuracy and safety profiles [6].

Recent developments in Ultra-High Frequency Radio-Frequency Identification-based healthcare
monitoring systems demonstrate the potential for continuous ECG surveillance without wired
connections. These systems incorporate electrodes into clothing textiles and transmit data wirelessly,
employing event-based communication strategies that activate upon arrhythmia detection to optimize
power consumption and network resources [7]. Advanced threshold selection algorithms help in providing
a trade-offs between false positive and false negative rates, enhancing clinical utility.

Key Components and Technological Architecture

The widespread adoption of wearable arrhythmia detection systems relies on three fundamental
components. First, consumer-grade heart rate sensors offer superior wearability and cost-effectiveness
compared to traditional Holter ECG devices [3]. These sensors enable long-term continuous monitoring,
which represents a viable alternative for detecting sporadic, asymptomatic cardiologic conditions instead
of more invasive loop recorders. Modern smartphones enhance these capabilities by serving as data
aggregation platforms that merge multichannel physiological data from diverse wearable sensors [9].

Second, contemporary heart rate sensors perform on-device processing of raw ECG and PPG data,
achieving high-quality single-lead ECG measurements. Commercial cardiac monitoring systems have
demonstrated validation for both snapshot ECG investigations and continuous 2-minute monitoring
protocols under various environmental conditions, including microgravity environments [10]. This
processing capability reduces latency and improves real-time diagnostic potential.

Third, advanced signal processing algorithms integrated into wearable platforms enable sophisticated
arrhythmia classification. These systems employ machine learning models trained on large datasets to
distinguish between normal sinus rhythm and various arrhythmic patterns, achieving sensitivity rates
exceeding 90% in controlled clinical trials [11].

Market Trends and Technological Innovations

Long-term, continuous monitoring represents the cornerstone of effective arrhythmia detection,
particularly given the increasing prevalence of asymptomatic arrhythmic conditions [12]. Current sensor
hardware platforms predominantly utilize rigid sensors for ECG and PPG measurements in watches and
smartphones. However, breakthrough developments in epidermal electronics have dramatically reduced
device bulkiness while maintaining diagnostic accuracy.

Novel ultra-thin sensors that can be deposited on substrates with only 3% of the elastic modulus of
stainless-steel backing, facilitating improved circulation and mechanical flexibility have been in use [13].
The sensors incorporate pyramid structures enabling up to 45% stretchability, with high aspect ratios
allowing skin adhesion through van der Waals forces alone. Manufacturing costs have dropped drastically
to approximately $100 per 13-micrometer thick sensor, with even operational costs as low as $4.80 per
year, making these technologies not only economically viable but also making their widespread
deployment a possibility [14].

Emerging Al-driven wearables focus on noise reduction, data clarity enhancement, and real-time patient
monitoring with Al-powered devices, such as smartwatches, ECG patches and rings offers real-time heart
monitoring with early arrhythmia detection capabilities [15]. Machine learning models, particularly
decision trees and convolutional neural networks, analyze heart rate and ECG data achieving high
accuracy rates in arrhythmia recognition. Advanced models utilizing generative adversarial networks
effectively remove noise from ECG signals, enhancing data clarity for accurate arrhythmia classification.
Hierarchical deep learning approaches have demonstrated F1-scores of 99.10% on noise-free data [16].

Real-Time Monitoring and Clinical Integration

Al-enabled wearables provide immediate notifications to patients upon detecting arrhythmic events,
enabling timely medical intervention. The proactive nature of these devices correlates with reduced
hospitalization rates and improved treatment adherence in study [17]. Integration with electronic health
records and telemedicine platforms creates comprehensive care pathways that bridge continuous
monitoring with clinical decision-making processes.

Contemporary systems employ sophisticated algorithms that balance sensitivity and specificity while
focusing primarily on minimizing false alarms. These algorithms adapt to individual patient baselines and
activity patterns, reducing artifact-related false positives while maintaining high detection rates for
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clinically significant arrhythmic events [18]. The core algorithms balance high sensitivity with the
imperative to minimize false alarms to reduce alert fatigue - a known barrier to clinical adoption. By
personalizing detection thresholds based on individual patient baselines and activity patterns, these
algorithms suppress artifact-related false positives without compromising the timely identification of
clinically significant arrhythmias. Collectively, these advances underpin the growing acceptance and
routine integration of wearable arrhythmia detection technologies into cardiovascular care.

Al applications in arrhythmia detection

AI Algorithm Development and Performance

Despite advances in PPG technology across smartwatches, smart bands, and smartphones, early-stage
atrial fibrillation (AF) detection remains unconquered territory in clinical practice. Al and machine
learning offer promising solutions to address detection challenges, with wearable devices incorporating
evolving Al/machine learning technologies providing consumer alerts before symptom onset [19].

Since 2020, 22 AF diagnosis models based on wearable devices have been developed utilizing A, achieving
substantial positive clinical results [20]. Al models, particularly deep neural networks, demonstrate high
sensitivity (94.80%) and specificity (96.96%) in detecting arrhythmias [21]. These algorithms process
wearable data streams to effectively identify abnormalities in heart rhythms across diverse patient
populations.

Contemporary Al approaches employ ensemble learning methods that combine multiple algorithmic
approaches to enhance diagnostic accuracy. Random forest classifiers, support vector machines, and deep
learning architectures are integrated to create robust detection systems that perform reliably across
various patient demographics and activity states [22].

Data Processing and Interpretation Frameworks

Most commercially available devices target fitness or wellness metrics for general health monitoring.
Recent integration of ECG monitors under the wearables umbrella has validated their utility in AF
detection [23]. Single-lead ECG monitoring devices improve signal quality through implementation of
fewer but higher-quality electrodes, optimizing the signal-to-noise ratio for arrhythmia detection [24].

The global aging population entails increased cardiovascular disease prevalence and thus potentially
overwhelming healthcare facilities, especially those resources that are focused on arrhythmia detection.
Commercial companies balance cost reduction and battery life extension while addressing pathologies
like paroxysmal arrhythmias that may produce low-power ECG signals essential in pre-symptomatic
phases [25].

Advanced data processing frameworks that incorporate multi-modal sensor fusion, combining ECG, PPG,
accelerometer, and gyroscope data to improve detection accuracy and reduce false positives, employ
temporal pattern recognition algorithms that analyze heart rate variability, rhythm regularity, and
morphological features across extended monitoring periods [26].

Clinical Case Studies and Validation

AF represents a global health challenge, associated with one-third of strokes in Europe and over 30% of
stroke events in the United States [27]. Automatic ECG interpretation has attracted multidisciplinary
expertise, recognizing the importance of home-based monitoring and patient education regarding cardiac
health status. Consumer wearable technologies equipped with physiological monitoring sensors represent
significant advances in this direction. Despite ECG effectiveness in AF detection, these signals remain
underutilized as screening tools compared to conventional vital signs including blood pressure and
temperature. The advent of Al and machine learning techniques provides a progressive framework for
extracting clinically relevant features from ECG and PPG signals that are challenging to discern through
standard analytical methods [28]. Currently, ECG and PPG constitute the principal physiological signals
exploited by commercially available smartphones and smartwatches for arrhythmia interrogation. These
Al-enhanced wearables hold the potential to revolutionize AF screening by enabling continuous, non-
invasive, and user-friendly monitoring, thereby facilitating early diagnosis and timely intervention that
can significantly reduce stroke risk and improve patient outcomes.

The BERT-based 4D attentive model with multitask learning adjustments for AF detection and
cardiovascular risk prediction achieved area under the curve values of 97.0%, demonstrating superior
performance in detecting linguistic and physiological signal patterns [29]. This approach represents a
significant advancement in multimodal Al applications for cardiac monitoring.

Recent clinical trials have demonstrated the effectiveness of Al-enhanced wearable devices in real-world
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settings. The e-BRAVE-AF trial showed that early AF detection via wearables doubled therapeutic
intervention rates, reducing stroke risk through timely anticoagulant initiation [30]. Long-term behavioral
pattern analysis using Al algorithms helps predict ventricular arrhythmia risk by identifying reduced
physical activity patterns and other prodromal indicators [31].

Integration Technologies and Clinical Impact

PPG and ECG integration systems: Contemporary smartwatches, including Apple Watch and Fitbit devices,
utilize PPG technology to monitor blood flow changes and detect irregular heart rhythms [26]. These
systems trigger notifications for ECG verification based on pattern analysis indicative of AF, creating a
two-stage screening approach that optimizes sensitivity while maintaining specificity.

The combination of PPG and ECG technologies demonstrates improved accuracy in cardiac rhythm
analysis. AliveCor achieved prediction of ventricular arrhythmias with an area under the receiver
operating characteristic curve of 0.746 through deep representations of behavioral data. Al models trained
on ECG data from 280 patients successfully predicted AF onset 30 minutes in advance, enabling proactive
clinical interventions [32].

Clinical outcomes and healthcare impact: The most significant impact of early AF detection involves
stroke prevention through timely therapeutic intervention. Real-time remote data monitoring using Al-
enhanced wearables enables personalized care, particularly for high-risk populations, by providing
continuous data streams to clinicians [33]. Large-scale patient datasets analyzed through AI algorithms
identify behavioral patterns and long-term trends that correlate with arrhythmic risk, enabling preventive
interventions [34].

Critical analysis of current technology limitations
Accuracy and Reliability Challenges

Arrhythmia detection requires extended physiological signal acquisition in patients' natural
environments. Portable ECG devices with dry contact sensors continuously monitor and process ECG data
through smartphone applications [35]. However, arrhythmia generation does not always correlate with
prominent ECG morphology changes and may remain undetected in standard examinations. Additionally,
heart rate variability is not directly represented by PQRST feature amplitudes, necessitating alternative
monitoring approaches beyond traditional ECG analysis [36].

Validation of medical tools requires rigorous assessment of accuracy and reliability parameters. Advanced
sensing systems for long-term intracardiac electrophysiological signal detection employ deep learning
approaches and implantable sensing technologies [37]. Multi-perspective wearable PPG-based systems
demonstrate promise but require extensive validation across diverse patient populations [38].

User Acceptance and Compliance Factors

Contemporary wearable electronic sensors enable consumers to monitor heart rhythms through
smartwatches, mobile phones, and portable ECG devices. Detection of atrial rates during arrhythmic
episodes provides crucial diagnostic information for rate-controlled therapy and follow-up treatment
protocols [39]. However, user compliance remains challenging due to device comfort, battery life, and false
alarm frequency.

Long-term adherence studies indicate that user acceptance correlates strongly with device comfort,
accuracy of notifications, and integration with existing healthcare workflows [40]. Educational initiatives
that explain device functionality and clinical relevance improve compliance rates significantly [41].

Technical Sensor Limitations

Advanced sensors measure electrophysiological signals, bioimpedance, skin temperature, and stress levels
from skin surfaces. Stratum corneum characteristics significantly limit non-invasive sensor accuracy and
reliability due to inconsistent and unstable measurements [42]. Motion artifacts from on-skin and near-
skin sensors create random or periodic signal disturbances caused by skin movements including bending
and stretching, introducing unwanted high-frequency components that may exceed bio-signal frequency
ranges [43].

Small-sized, tightly attached sensors present handling difficulties and may cause skin irritation,
inflammation, and rashes due to sensor pressure, producing symptoms similar to arrhythmic
manifestations. Blood flow restriction and reduced oxygenation occur more frequently in sensors placed
over areas with higher adipose tissue layers. Additionally, signals become more susceptible to noise and
motion artifacts, making reliable arterial measurements from deep arteries challenging due to adipose
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tissue interference [44].

Future directions and technological innovations

Emerging Sensor Technologies

Arrhythmias remain common and are predicted to increase with population aging, creating demand for
convenient continuous detection sensors [45]. Wearable devices have emerged to address this need,
providing real-time physiological metric tracking with varying invasiveness levels. The most successful
implementations are non-invasive sensors in bandage form.

Researchers have developed electronic tattoo (e-tattoo) sensors for ECG and PPG applications using
temporal tattoos and laminating machines. Performance parameters demonstrate over 92% accuracy for
ECG and over 95% for PPG, which are comparable to electrode-based flexible sensors [46]. However,
several minutes of data capture are required to achieve these accuracies, indicating significant limitations.
Recent devices are skin-like with 90 micrometers thickness and stretchability up to 45% strain, with
elastomer-coated backsides allowing up to 30 re-use cycles [47].

Device dermatitis affects over 60% of users despite gauze pad implementation. Smartwatch and
smartphone accuracies remain relatively low at 76% and 71%, respectively. Bidirectional long-short term
memory with attention mechanisms increased smartwatch device accuracy from 71% to 77.7% [48].

Advanced Al Integration

Future developments focus on personalized algorithms utilizing long-term wearable device data to
customize patient-specific detection parameters. Integration with telemedicine platforms enhances
remote monitoring systems for real-time physician notifications [49]. Multimodal sensor approaches
combining PPG, ECG, and accelerometer data boost detection accuracy across different arrhythmia types.

Deep learning-based systems like Cardiologs demonstrate clinical reliability leadership, while consumer
devices excel in continuous monitoring but face precision-usability trade-offs [50]. Advanced machine
learning architectures incorporating transformer models and attention mechanisms show promise for
improved pattern recognition in complex cardiac rhythms [51].

Healthcare System Integration

Comprehensive architectures managing interconnection between smartphones, wearable systems, and
ambulatory ECG recorders with healthcare systems enable real-time automated ECG classification and
electronic health record interoperability [52]. These integrated platforms support clinical decision-making
through seamless data flow and standardized reporting formats.

Cloud-based analytics platforms process large-scale patient data streams to identify population-level
trends and individual risk stratification. These systems employ federated learning approaches that
maintain patient privacy while enabling collaborative model development across institutions [53].

User-Centric Design Evolution

Unobtrusive wearable sensors capable of continuous physiological data collection make arrhythmia
screening more accessible [54]. The simplest widespread wearable ECG sensor remains the chest strap
utilizing reusable electrodes at heart level. Telemetry units transmit real-time signals to secondary
devices, though overly tight fits cause discomfort and skin irritation while humidity and sweating can
compromise electrode contact [55].

Future designs prioritize seamless integration into daily activities through improved materials science
and ergonomic optimization. Textile-integrated sensors and smart clothing represent promising
directions for continuous monitoring without device awareness [56].

Regulatory framework and compliance
Current Regulatory Landscape

Rhythm disorders represent common cardiovascular diseases often unnoticed in general populations,
potentially causing lifelong consequences without proper treatment. Wearables with ECG capabilities face
regulatory challenges including US Food and Drug Administration (FDA) and Federal Communications
Commission compliance, comfortable form factors, usage simplicity, and data trust from users and
physicians [57].
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Long-term continuous monitoring remains essential for arrhythmia detection. Government health
agencies maintain regulatory oversight of wearable devices, while state-of-the-art devices encounter
problems with motion artifacts, offline data loss, low accuracy, and patient non-cooperation [58].

FDA guidelines and safety standards: Traditional ECG signal acquisition for arrhythmia detection relied on
wired systems including Holter monitors and telemetry units. With wireless ECG transmission technology
advent, the FDA began regulating transmission safety [59, 60]. Studies examine potential Bluetooth and
Wi-Fi frequency interference with nearby electronic devices operating on similar bands. Key concerns
involve whether Bluetooth and Wi-Fi signals disrupt critical medical device function, including
pacemakers, defibrillators, and cardiac electronic rhythm devices.

FDA recommends that active implantable medical device manufacturers assess electromagnetic
interference risks from mobile phones and similar communication devices used near implantable medical
devices. Risk mitigation includes maintaining minimum 15-cm distances between devices and implants
while avoiding direct contact with devices or leads [61].

European CE marking requirements: Before EU market introduction, medical device safety and
performance require thorough evaluation with manufacturers providing sufficient clinical evidence.
Independent Notified Bodies conduct assessments. Arrhythmia monitoring devices classify as active
medical devices administering or exchanging energy with human bodies or monitoring vital physiological
processes, typically classified as Class Ila under Directive 93/42/EEC.

Article 8 of Regulation (EU) 2017/745 stipulates that devices monitoring vital physiological parameters
where fluctuations pose immediate patient danger classify as Class IIb, including drug delivery monitors,
electrical impulse monitors, cardiac monitors interacting with active devices, and life-supporting systems
[62].

Market Entry Barriers

Multiple device manufacturers have entered wearables markets, creating diverse devices and applications
specializing in biometric data monitoring focused on physical activity, heart rate, and sleep analysis [63].
This trend has generated interest in medical and clinical applications.

PPG demonstrates AF detection with 69.8% sensitivity and 86% specificity compared to 12-lead Holter
monitor reference standards. Classification algorithms on wearable devices have evolved through machine
learning techniques, with PPG devices supporting advanced algorithms increasing significantly from
2019-2020. Consumer-grade devices competing with medical-grade systems raise safety concerns for
heart disease detection. High false positive rates due to complex algorithms represent additional
concerns, though ambulatory devices targeting high sensitivity help alleviate these issues [64].

Future Regulatory Evolution

Medical device development, testing, and commercialization including wearable arrhythmia detection
technologies occur within highly regulated frameworks. International standards adherence during
wearable sensor design and validation ensures compliance while fostering innovation and accelerating
market access [65].

For small and medium enterprises and research laboratories, regulatory navigation presents particular
challenges. EU Medical Device Regulation (MDR 2017/745) and In Vitro Diagnostic Regulation (IVDR
2017/746) introduction significantly reshaped compliance environments, emphasizing lifecycle
approaches to safety, performance, and clinical evaluation.

Ethical considerations and data privacy

Privacy and Security Frameworks

As wearable medical devices become prevalent in healthcare and home environments, ensuring data
privacy and security becomes increasingly critical. These devices offer valuable real-time health insights
but remain susceptible to cybersecurity threats including malicious QR codes and laser-based attacks on
voice assistants from distances exceeding 100 meters [66].

Wearables for cardiac monitoring present unique risks. Unauthorized access to sensitive physiological
data including heart rhythms could lead to false diagnoses or personal health information misuse.
Wireless data transmission between devices and external systems raises concerns about interception,
tampering, or confidential information leakage [67].

FDA requires "cyber devices" with internet connectivity and software components to submit cybersecurity
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documentation in premarket applications, including post-market vulnerability monitoring, identification,
addressing plans, and coordinated vulnerability disclosure procedures [68].

Informed Consent and User Rights

Mobile health data monitoring represents one approach to improving citizen health. However, potential
exists for private information leakage, particularly health information. Device users must identify tangible
device elements that record health data according to manufacturer policies, with privacy concerns
regarding undisclosed usage [69].

Ethical considerations involve wearables preventing potential cases through false detection and
proliferating inadequate preventive interventions, justifying ethically grounded precautionary
approaches. Transparency lack characterizing preventive Al system development based on wearable
technologies raises concerns regarding data collection and informed consent without complete
understanding of potential applications [70].

Comparative analysis of global markets

Market Dynamics and Growth Projections

Approximately 20% of US residents currently own smart wearable devices, with global markets expected to
reach $70 billion by 2025 [71]. Heart rate represents the most frequently monitored health-related
parameter, followed by blood pressure monitoring, both closely related to arrhythmia detection. Rapid
wearable device market expansion generates growing interest in arrhythmia detection applications [72].

New sensing methods explore rare sensor types including ultrasonics for ECG data detection. Sensing
technology research using wearable devices develops improved detection methods according to temporal
and frequency parameters. Wrist-type and ring-type wearable devices provide convenient tools for
asymptomatic or symptomatic AF diagnosis [72].

Regional Adoption Patterns

Clinical wearable technology applications center on medical-grade counterparts designed for healthcare
sectors. Consumer market domination by smartwatches and wearables contrasts with digital health
technology emergence focused on user-friendly mobile applications [73].

Regional differences in adoption reflect healthcare system variations, regulatory environments, and
cultural acceptance of technology-mediated health monitoring. European markets emphasize privacy
protection and regulatory compliance, while Asian markets demonstrate rapid technology adoption with
integration into existing healthcare infrastructure [74].
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Device Name

Apple Watch
Series 4-9 [26]

Samsung
Galaxy Watch
4/5[75]

Fitbit [76]
Sense/Sense 2

Withings
ScanWatch [77]

Garmin
Forerunner/fenix
Serios

WHOOP 4.0

Oura Ring Gen
3

AliveCor
KardiaMobile

AliveCor Kardia
Mobile [78] 6L

Manufacturer

Apple Inc.

Samsung
Electronics

Google (Fitbit)

Withings

Garmin Ltd

WHOORP Inc

Oura Health

AliveCor Inc

AliveCor Inc
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Signal
Type

PPG;

ECG

PPG;
ECG

PPG;
ECG

PPG;
ECG

PPG
only

PPG

only

PPG
only

ECG

only

6-lead
ECG

FDA/CE
Status

FDA Class
I, CE

FDA Class
Il, CE

FDA Class
I, CE

CE
(Medical
Device),
FDA
cleared

Consumer
device

Consumer
device

Consumer
device

FDA Class
I, CE

FDA Class
Il, CE

Primary Features

Continuous PPG monitoring,
30 s single-lead ECG on
demand, irregular rhythm
notification

Continuous PPG, 30 s ECG,

Samsung Health Monitor app

integration

Multi-wavelength PPG, ECG

app for AF assessment, HRV

tracking

Hybrid smartwatch,
continuous PPG, 30 s ECG,
SpO, monitoring

Elevate wrist HR sensor,
sports/fitness focus,
continuous monitoring

Continuous PPG,
recovery/strain analytics,
HRV-focused

Finger PPG, sleep-focused,
temperature sensing

Smartphone-based single-

lead ECG (30 s), on-demand

only, Al interpretation

6-lead ECG (I, II, Ill, aVL,
aVR, aVF), enhanced
arrhythmia detection

AF Detection
Metrics

Sen: 97.0-
98.3%; Spec:
99.3-99.6%;
PPV: 84.0%

Sen: 93.5-
95.8%; Spec:
97.1%; PPV: 78-
82%

Sen: 98.7%;
Spec: 95.7%;
PPV: 83.1%

Sen: 91.9%;
Spec: 95.3%;
PPV: 76.5%

No AF detection
(HR monitoring
only)

No AF detection
(not designed for
arrhythmia)

No AF detection
(sleep/recovery
focus)

Sen: 93.0-
97.0%; Spec:
84.3-96.6%;
PPV: 71-84%

Sen: 96.2%;
Spec: 94.1%;
Enhanced
chamber view

HR Accuracy

MAE: +2-3 bpm;
Correlation: r=0.95-0.98

RMSE: +2.8 bpm;
Accuracy: +5 bpm 98%
time

Error: £3.5 bpm, High
agreement at rest

Error: 4 bpm;
Rest/activity validated

MAE: +5-7 bpm; Lower
accuracy during exercise

Accuracy: +1-2 bpm at
rest; HRV correlation:
r=0.93

HR during sleep: +1.5
bpm; Not validated for
activity; ECG-derived HR:
+1 bpm

ECG-derived HR: +1 bpm

ECG-derived HR: 1 bpm

TABLE 1: Consumer Wearables (PPG-Based and Single-Lead ECG Snapshot Devices)

PPG: Photoplethysmography; ECG: Electrocardiography; FDA: Food and Drug Administration; Sen: Sensitivity; Spec: Specificity; PPV: Positive Predictive
Value; AF: Atrial Fibrillation; HR: Heart Rate; MAE: Mean Absolute Error; bpm: Beats Per Minute; RMSE: Root Mean Square Error; HRV: Heart Rate Variability

Study
Context

Apple Heart
Study
(n=419,297),
ambulatory

Clinical
validation
(n=512),
mixed activity

Fitbit Heart
Study
(n=455,699),
real-world

Clinical trial
(n=1,006),
mixed settings

Third-party
validation,
sports
activities

Athlete
monitoring,
sleep studies

Sleep
laboratory
validation

Multiple
clinical trials,
on-demand
use

Clinical
validation vs
12-lead ECG

Leading Companies and Innovation Hubs

Market leaders including Apple, Google (Fitbit), Samsung, and specialized medical device companies drive
innovation through substantial research and development investments. These companies collaborate with
academic institutions and healthcare organizations to validate clinical applications and expand market

reach [79].
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Device Name

Zio Patch [30]
(XT, AT)

BioTelemetry
MCOT

BodyGuardian
Heart

CardioSTAT

CAM Patch

Medtronic
LINQ II

Abbott
Confirm Rx
[79]

VitalPatch

iRhythm Zio
Watch

Manufacturer Signal Type
iRhythm Single-lead
Technologies ECG
Philips
(BioTelemetry) 3-Lead ECG
Preventice
Solutions Single-lead
(Boston ECG
Scientific)
Icentia Single-lead
(Biotricity) ECG
Bardy .
i . Single-lead
Diagnostics

ECG
(BardyDx)

Subcutaneous
Medtronic

ECG

Subcutaneous
Abbott

ECG
. Single-lead
VitalConnect

ECG
Rhythm Single-lead
Technologies ECG

FDA/CE
Status

FDA
Class I,
CE

FDA
Class Il,
CE

FDA
Class I,
CE

CE,
Health
Canada

FDA
Class Il

FDA
Class
I, CE

FDA
Class
I, CE

FDA
Class I,
CE

FDA
Class Il

Primary Features

Water-resistant adhesive patch,
continuous recording, beat-to-beat
analysis, cloud-based Al review

Mobile Cardiac Outpatient
Telemetry, real-time transmission,
immediate alerts

Reusable sensor with disposable
electrodes, wireless data
transmission, Al-powered analytics

Ultra-lightweight patch (9g),
continuous beat-to-beat monitoring,
smartphone connectivity

P-wave centric algorithm, adhesive
patch with water-resistant design,
optimized for AF detection

Insertable cardiac monitor (ICM),
long-term subcutaneous monitoring,
remote monitoring capability

Smartphone-compatible ICM,
continuous AF monitoring, remote
transmission via smartphone

Multi-parameter monitoring (ECG,
HR, HRV, RR, temp), disposable
biosensor, hospital/remote use

Prescription smartwatch with
continuous ECG, patient-triggered
events, combined with cloud Al
analytics

) . Wear-Up
AF Detection Metrics i
Duration
Sen: 99.0%; Spec:
Up to 14
97.0%; NPV: 99.4% vs
days
Holter
Sen: 96-98%; Real-time
. i Up to 30
arrhythmia detection; AF d
ays
burden quantification Y
7-14
Sen: 97.4%; Spec:
days per
95.8%; PPV: 89.2%
cycle
Sen: 96.8%; Spec:
. Upto7
96.3%; AF detection
o . days
within 30 min
Sen: 98.5%; Spec:
. Upto7
97.7%; P-wave analysis
days
enhancement
Sen: 99.0%; Spec:
Upto4.5
97.4%; AF burden
. years
tracking over years
Sen: 98.7%; Spec:
i Upto 3
96.9%; Daily AF burden
years
reports
Sen: 93.2%; Spec:
. . Upto7
91.8%; Multi-arrhythmia
K days
detection
Sen: 97.8%; Spec:
o ) Upto7
96.2%; Similar to Zio
days

Patch

TABLE 2: Medical-Grade Wearable Patches and Continuous Loop Recorders

Study
Context

mSTOPS trial
(n=5,203),
clinical
diagnostic
use

Multiple
RCTs,
hospital
discharge
monitoring

Clinical
validation
(n=2,456),
cardiology
practices

Canadian
clinical study
(n=387)

Clinical
validation
(n=232), post
ablation

Hospital
telemetry
replacement
studies

Clinical
validation vs
Holter
(n=204)

ECG: Electrocardiography; FDA: Food and Drug Administration; Sen: Sensitivity; Spec: Specificity; PPV: Positive Predictive Value; AF: Atrial Fibrillation; HR:
Heart Rate; HRV: Heart Rate Variability; RR: Respiration Rate; NPV: Negative Predictive Value

Platform
Name

Cardiologs

Eko Al
(DUO/CORE)

2025 Sharma et al. Cureus J Comput Sci 2 :

Input
Developer .
Signal
. 12-
Cardiologs
(Philips) Lead
ilips
P ECG
12-
Eko Health
Lead
ECG

FDAI/CE
Status

FDA
510(k),
CE

FDA
510(k),
CE

AF Detection

Al Architecture & Features

Metrics

Deep CNN (ResNet-based), 20+

arrhythmia types, real-time
automated interpretation,
integrated with major ECG

devices

Deep learning ensemble model,
low ejection fraction detection,
structural heart disease

Training Dataset

Study context

AF: Sen 94.7%,

Spec 99.7%, AUC:

0.98, Multi-
arrhythmia panel

AF: Sen 99.4%,
Spec 98.0%, Also
detects LV

€s44389-025-10001-6. DOI https://doi.org/10.7759/s44389-025-10001-6

~200,000 annotated
ECGs

~650,000 ECGs with

echo correlation

Hospital systems
integration,
retrospective
validation

Mayo Clinic Al
ECG platform
partnership
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Viz ECG

Schiller DTS
Al

GE
Healthcare
MUSE Al

Apple Watch
Series 4-9

Samsung
Galaxy
Watch 4/5
[78]

Fitbit
Sense/Sense
2

WHOOP 4.0
(80]

Oura Ring
Gen 3 [81]

AliveCor
KardiaMobile

AliveCor
Kardia
Mobile 6L

Preventice
Body
Guardian Al

Deep 01
(Shenzhen
Lifemax)

Rhythmia
HDX Al

iCardio Al

Viz.ail

Schiller
AG

GE
Healthcare

Apple Inc.

Samsung
Electronics

Google
(Fitbit)

WHOOP
Inc

Oura
Health

AliveCor

Inc

AliveCor
Inc

Preventice
Solutions

Lifemax
technology

Boston
Scientific

iCardio.ai

12-
Lead
ECG

12-
Lead
ECG

Lead
ECG

PPG;
ECG

PPG;
ECG

PPG;
ECG

PPG

only

PPG
only

ECG
only

6-lead
ECG

Led
ECG

12-
Lead
ECG

12-
Lead
EP

Lead
EP

FDA
510(k),
CE

CE
Medical
Device

FDA
510(k),
CE

FDA
Class I,
CE

FDA
Class I,
CE

FDA
Class I,
CE

Consumer
device

Consumer
device

FDA
Class I,
CE

FDA
Class I,
CE

FDA
(510K)

CFDA
(Chine)

FDA
510k, CE

CE
Medical
Device

screening

CNN-based STEMI detection,
automated alert system for
critical findings, mobile
notification to care teams

Integrated with Schiller ECG
devices, 40+ diagnostic
statements, multilingual support

Integrated with MUSE ECG
management system, Al
enhanced interpretation,
workflow optimization

Continuous PPG monitoring, 30
s single-lead ECG on demand,
irregular rhythm notification

Continuous PPG, 30 s ECG,
Samsung Health Monitor app
integration

Multi-wavelength PPG, ECG app
for AF assessment, HRV
tracking

Continuous PPG, recovery/strain
analytics, HRV- focused

Finger PPG, sleep-focused,
temperature sensing

Smartphone-based single-lead
ECG (30 s), on-demand only, Al
interpretation

6-lead ECG (I, II, lll, aVL, aVR,
aVF), enhanced arrhythmia
detection

Multimodal Al (Combines 12-
lead + Continous monitoring
data), Realtime risk satisfaction

Transformer based architecture,
trained on large Asian population
data set, 72-diagnotic categories

Combines surface ECG+ intra
cardiac mapping, arrhythmia
mechanism classification,

ablation guidance

Cloud-based CNN platform, API
for EMR integration, continuous
learning from user feedback

dysfunction

STEMI focus AF as
secondary finding:
Sen 92.3%, Spec
96.8%

AF: Sen 96.1%,
Spec 97.4%, PPV:
88.7%

AF: Sen 95.8%,
Spec 98.2%, Bundle
branch blocks,
chamber
enlargement

Sen: 97.0-98.3%,
Spec: 99.3-99.6%,
PPV: 84.0%

Sen: 93.5-95.8%,
Spec: 97.1%, PPV:
78-82%

Sen: 98.7%, Spec:
95.7%, PPV: 83.1%

No AF detection (Not
designed for
arrhythmia)

No AF detection
(Sleep/recovery
focus)

Sen: 93.0-97.0%,
Spec: 84.3-96.6%,
PPV: 71-84%

Sen: 96.2%, Spec:
94.1%, Enhanced
chamber view

AF: Sen 97.2%,
Spec 96.5%,
Predictive AF risk
scoring

AF: Sen 98.2%,
Spec 97.1%, AUC:
0.99

Complex arrhyythmia
classificaiton AF
substrate mapping
success prediction

AF: Sen 93.8%,
Spec 96.9%, 17
arrhythmia

TABLE 3: Al-Powered ECG Analysis Platforms (12-Lead ECG)

CNN: Convolutional Neural Network; ECG: Electrocardiography; PPG: Photoplethysmography; HRV: Heart Rate Variability; AF: Atrial Fibrillation; API:
Application Programming Interface; EMR: Electronic Medical Record; Sen: Sensitivity; Spec: Specificity; AUC: Area Under the Curve; LV: Left Ventricle; PPV:
Positive Predictive Value; bpm: Beats Per Minute
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~85,000 labeled
ECGS

~150,000 ECGs,

European datasets

Proprietary dataset
>500,000 ECGs

MAE: +2-3 bpm;
Correlation: r=0.95-
0.98

RMSE: +2 .8 bpm,
Accuracy: 5 bpm
98% time

Error: £3.5 bpm; High
agreement at rest

Accuracy: +1-2 bpm at
rest, HRV correlation:
r=0.93

HR during sleep: +1.5
bpm; Not validated for
activity ECG-derived
HR: £1 bpm

ECG-derived HR: +1
bpm

ECG-derived HR:
bpm

[N

300,000 ECGs without
outcomes data

1.2 million ECG
(Chinese population)

Electrophysicology
study database

Emergency
department triage

Clinical practice in
cardiology
departments

Hospital ECG
management

systems

Apple Heart Study
(n=419,297),
ambulatory

Clinical validation
(n=512), mixed
activity

Fitbit Heart Study
(n=455,699), real-
world

Athlete monitoring,
sleep studies

Sleep laboratory
validation

Multiple clinical
trials, on-demand
use

Clinical validation
vs 12-lead ECG

Integrated with
patch monitoring
system

Chinese hospital
networks
validation

Electrophysicology
laboratory use
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Clinical validation and real-world evidence

Performance Metrics and Validation Studies

Table I presents a comprehensive comparison of various Consumer Wearables (PPG-Based and Single-
Lead ECG Snapshot Devices) demonstrating the diversity in arrhythmia detection capabilities across
different manufacturers and technologies. Apple Watch Series 4+ demonstrates 87% sensitivity and 97%
specificity for AF detection with FDA clearance and high specificity rates validated through the Apple
Heart Study [82]. Tables 2-3 present a comprehensive comparison of various medical-Grade Wearable
Patches and Continuous Loop Recorders and Al-Powered ECG Analysis Platforms (12-Lead ECG),
respectively.

The Zio Patch by iRhythm Technologies achieves 63.2% diagnostic yield with continuous ECG monitoring,
detecting arrhythmias in 48% of patients within one day through the mSToPS Trial validation [83, 84].
Clinical-grade devices like Cardiologs Al achieve 96.9% specificity across AF and 20 additional arrhythmia
types using deep learning approaches that reduce false positives by 70% [85].

Real-World Clinical Outcomes

Wearable technology implementation has demonstrated measurable improvements in patient outcomes
through early detection and intervention. The e-BRAVE-AF trial showed doubled therapeutic intervention
rates with early AF detection via wearables, reducing stroke risk through timely anticoagulant usage [86,
87].

Long-term monitoring studies indicate that continuous surveillance enables detection of asymptomatic
arrhythmic episodes that would otherwise remain undiagnosed. This early detection facilitates preventive
interventions that reduce hospitalization rates and improve quality of life [88].

Future research directions and opportunities

Technological Innovation Pathways

Emerging technologies focus on cardiac electrophysiology monitoring using flexible textile e-tattoos,
mobile pneumotachometers for respiratory rate monitoring, and soft wireless cardiac assist devices that
are battery-free and insertable [89]. Ribbon-like textile-integrated bend sensors attach to clothing while
haptic shirts guide appropriate chest compression force application [90].

Wearable sweat sensors manufactured through dipping-based coating processes and thin, stretchable
smart circuit films functioning in negative-strain states represent additional innovation areas. Modular
approaches combining sensors, therapy, and neural electrical recording capabilities in single devices offer
comprehensive monitoring solutions.

Interdisciplinary Collaboration Opportunities

Interdisciplinary collaborative programs in wearable and flexible electronic sensors for arrhythmia
detection benefit from combining expertise across materials science for nano-engineering, electrical and
bioengineering for sensor design, chemistry for smart skin fabrication, and cardiology for clinical research.

Cross-disciplinary research advances fundamental knowledge, fosters innovative ideas, trains diverse
students, increases research funding competitiveness, and creates relationships with government agencies
and clinical departments. These collaborations accelerate translation from laboratory innovations to
clinical implementations.

Integration With Emerging Healthcare Models

Future developments emphasize integration with telemedicine platforms, remote patient monitoring
systems, and value-based healthcare models. Al-driven analytics platforms that process multi-
institutional data while preserving privacy through federated learning approaches represent significant
opportunities.

Precision medicine applications utilizing genetic information, lifestyle factors, and continuous
physiological monitoring data enable personalized arrhythmia risk stratification and intervention
strategies tailored to individual patients.

Conclusions
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Continuous, long-term, real-time monitoring remains fundamental for effective arrhythmia detection.
While continuous and intermittent ECG recordings identify sustained AF episodes lasting 60 seconds or
more for clinical prevalence determination, advances in device form factor and comfort drive wearable
technology adoption by patients. Commercial wearables including smartwatches and smartphones offer
promising digital health platforms, but rigid and bulky designs limit placement options and cause
discomfort. These limitations result in poor fit, motion artifacts, data loss, and reduced accuracy. Recent
lightweight, flexible wearable innovations improve user experience and adherence. Epidermal electronics
represent significant advancement through stretchable, adhesive-free, disposable designs mimicking skin
properties for seamless integration. However, durability challenges persist with conductive gel
degradation in wet electrodes and sweat or sebum buildup in solid materials impairing sensor
performance. Screen-printed graphene electrodes on textiles demonstrate promise, maintaining high
conductivity and functionality after extensive washing and bending cycles. The integration of Al and
machine learning algorithms has transformed arrhythmia detection capabilities, achieving very sensitivity
and specificity rates often exceeding 95% in controlled studies with advanced models. Future
developments must address regulatory compliance, user acceptance, data privacy, and clinical integration
while maintaining diagnostic accuracy and reliability.

This comprehensive analysis demonstrates that Al-enhanced wearable electronics for arrhythmia
detection represent a rapidly maturing field with significant potential for improving cardiovascular health
outcomes through continuous monitoring, early detection, and personalized intervention strategies.
Continued collaboration between technology developers, healthcare providers, and regulatory bodies will
be essential for realizing this potential while ensuring patient safety and privacy protection.

Appendices

Appendix: Systematic Review Methodology

Wearable Sensors for Arrhythmia Detection With AI/ML Integration: PRISMA Diagram and Quality
Assessment

Appendix A: PRISMA 2020 Flow Diagram
Identification

Records identified from databases (n = 342):

e  PubMed/MEDLINE: n =128

e IEEE Xplore: n=97

»  ScienceDirect: n =86

e Google Scholar: n =31

Records removed before screening (n = 110):

«  Duplicate records removed: n = 87

¢ Records marked as ineligible by automation tools: n = 23
Screening

Records screened (n = 232)

Records excluded (n = 129):

«  Not relevant to research topic: n = 98

*  Wrong study type (reviews, editorials): n = 31
Eligibility

Reports sought for retrieval (n = 103)

Reports not retrieved (n = 3) - Unable to access full text

2025 Sharma et al. Cureus J Comput Sci 2 : es44389-025-10001-6. DOI https://doi.org/10.7759/s44389-025-10001-6

13 of 19



Cureus Journal of Computer Science

Reports assessed for eligibility (n = 100)

Reports excluded (n =42):

*  No AI/ML algorithm component: n = 18

e Invasive monitoring only: n=9

e Sample size < 10 participants: n="7

e Lacking validation data or methodology: n=5
e Non-English language: n=3

Included

Studies included in systematic review (n = 58)

e Clinical validation studies: n = 32

e Algorithm development and validation studies: n =18
«  Device design and technical validation: n =8

Note: This systematic review followed the PRISMA 2020 statement guidelines. Two independent reviewers
conducted screening and data extraction. Any disagreements were resolved through consensus discussion
or third-party adjudication when necessary.

Appendix B: QUADAS-2 Quality Assessment Framework

The Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) tool was used to evaluate the
methodological quality of included diagnostic accuracy studies. Each study was assessed across four key
domains for risk of bias and applicability concerns.

Signaling Questions

Patient Selection

1. Was a consecutive or random sample of patients enrolled?
2. Was a case-control design avoided?

3. Did the study avoid inappropriate exclusions?

Risk of Bias: Low/High/Unclear

Applicability: Low/High/Unclear

Index Test

1. Were the index test results interpreted without knowledge of the reference standard?
2. If a threshold was used, was it pre-specified?

3. Was the execution of the index test adequately described?
Risk of Bias: Low/High/Unclear

Applicability: Low/High/Unclear

Reference Standard

1. Is the reference standard likely to correctly classify the target condition?
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2. Were reference standard results interpreted without knowledge of index test?

3. Was a validated gold standard used (e.g., 12-lead ECG, Holter monitoring)?

Risk of Bias: Low/High/Unclear

Applicability: Low/High/Unclear

Flow and Timing

1. Was there an appropriate interval between index test and reference standard?

2. Did all patients receive the same reference standard?

3. Were all patients included in the analysis?

Risk of Bias: Low/High/Unclear

Applicability: N/A

Quality Rating Criteria

« Low Risk: Study meets all signaling question criteria with minimal potential for bias.
» High Risk: Study has significant potential for bias or serious concerns about applicability.
« Unclear Risk: Insufficient information reported to assess the domain adequately.
Assessment Protocol

Each of the 58 included studies was independently assessed by two reviewers using this QUADAS-2
framework. Disagreements in quality ratings were resolved through discussion and consensus. Individual
study ratings are available in the supplementary materials.

Appendix C: Database-Specific Search Strategies

Search Date: October 31, 2025

Date Range Covered: January 1, 2015-October 31, 2025

C.5 Search Strategy Notes

e Search was conducted on October 31, 2025, capturing all publications up to that date

« Boolean operators (AND, OR) were used to combine search terms effectively

» Database-specific syntax and field tags were applied according to each platform's requirements

» Hand searching of reference lists from key articles was performed to identify additional relevant
studies

¢ Citation tracking of seminal papers was conducted using Google Scholar and Web of Science

o Grey literature was not systematically searched but relevant technical reports identified through other
means were considered

« No language restrictions were initially applied, but non-English articles were subsequently excluded
due to resource constraints

Reproducibility Information: Complete search logs and screening decisions are available upon request.
The search strategy was peer- reviewed by a medical librarian prior to execution. All searches were saved
and can be re-run to update the review. Two independent reviewers conducted all screening stages with
inter-rater reliability (Cohen's kappa) calculated at each stage.
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Documentation compliant with PRISMA 2020 and QUADAS-2 guidelines.

Systematic Review: Wearable Sensors for Arrhythmia Detection with AI/ML Integration (2015-2025).
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