
Received 12/17/2025
Review began 01/07/2026
Review ended 01/28/2026
Published 01/28/2026

© Copyright 2026
Aggarwal et al. This is an open access
article distributed under the terms of the
Creative Commons Attribution License CC-
BY 4.0., which permits unrestricted use,
distribution, and reproduction in any
medium, provided the original author and
source are credited.

DOI:
https://doi.org/10.7759/s44389-026-00021-7

Machine Learning Approaches in Software Fault
Prediction: A Review
Ruchika Aggarwal , Kamaljit Kaur

1. Department of Computer Science, Shri Guru Granth Sahib World University, Fatehgarh Sahib, IND 2. Department of
Computer Application, CGC Landran, Mohali, IND

Corresponding author: Ruchika Aggarwal , ruchikaphd01@gmail.com

Abstract
This paper reviews recent developments in the use of machine learning methods for predicting software
faults to enhance software reliability and quality. To address the various challenges concerning software
fault prediction, we conducted a review of 45 articles published between 2023 and 2025 from IEEE,
Springer, ACM, and ScienceDirect digital libraries. The paper covers topics such as factors influencing
software fault prediction, prediction techniques, datasets and software metrics, evaluation metrics, model
selection criteria, and challenges associated with current solutions. The results indicate that Support
Vector Machine and Random Forest are superior in terms of accuracy, precision, recall, and F1-score. The
use of public datasets, particularly those from the PROMISE and NASA Metric Data Program repositories
containing product metrics, is widespread and contributes to improved model performance. The purpose
of this study is to advance research in software fault prediction and support the development of high-
quality software products by improving defect predictability. This review will be useful to researchers, as it
presents the latest overview of the existing literature on software defect prediction.

Categories: AI applications, Software Testing, Machine Learning (ML)
Keywords: software fault prediction, artificial intelligence, machine learning, classification, quality assurance

Introduction And Background
Software fault prediction (SFP) has become essential for ensuring software quality, as more than half of
development costs are spent on detecting and correcting defects. With the global software market valued
at $3.7 trillion of which 23% is devoted to quality assurance and testing, early detection of faults is critical
to reducing cost and preventing catastrophic failures in large, complex systems. SFP resolves this problem
by locating modules that are prone to defects to ensure that testing activities are prioritized in areas
where they are most required to achieve better quality software at reduced costs [1].

SFP identifies defect-prone modules through creation of various classification and categorization models
utilizing machine learning (ML) approaches. It belongs to the software development life cycle where we
forecast the fault with an ML methodology with previous data. It is a systematic approach that facilitates
production of quality products and low-cost software within the short potential time to satisfy the
customer expectations [2].

ML has thus emerged as a key enabler for SFP. ML algorithms are able to automatically learn the patterns
that are historically learned in software metrics, including code complexity, change history, and developer
activity to provide an accurate prediction of the modules or components most likely to contain a fault. The
scalability of the ML to large data volumes, the capability to adapt to the changing software, and the
combination of various features make it specifically applicable to the contemporary software engineering
setting [3].

Literature review
In order to enhance the quality of software, the main focus should be on creation of a superior SFP model.
It is possible to introduce ML/AI-based models and development tools that will enable the detection and
correction of defects during development and will avoid the need to use high resources. The following
literature review shows the recent research (2023-2025) on ML techniques, datasets, and evaluation
metrics.

Software Fault Prediction

The growing sophistication of software systems has facilitated the increased attention to software defect
prediction (SDP), where recent research investigates application scenarios, ML/deep learning (DL)
methods, datasets, metrics of evaluation, and validation methodology [4]. According to the research
conducted by SDP, it is demonstrated that both the traditional ML models and the latest models of DL
exhibit a considerable enhancement in the defect classification and increase the reliability of the software,

1, 2 1

Cureus Journal of Computer Science
Open Access Review Article

How to cite this article
Aggarwal R, Kaur K (January 28, 2026) Machine Learning Approaches in Software Fault Prediction: A Review. Cureus J Comput Sci 3 : es44389-026-
00021-7. DOI https://doi.org/10.7759/s44389-026-00021-7

https://doi.org/10.7759/s44389-026-00021-7
https://cureusjournals.com/users/67861-ruchika-aggarwal-
https://cureusjournals.com/users/68013-kamaljit-kaur
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)

decreased the cost of development, and increased the quality assurance [5]. Detecting the factors that
made the system faulty and allowing it to be improved continuously are also provided by AI-driven
detection methods that enhance system adaptability [6].

Current literature highlights the strong effectiveness of neural networks, DL, ensemble methods, and
feature-selection strategies, with the NASA MDP and PROMISE repositories being the most frequently
used public datasets [7]. The studies emphasize the importance of considering numerous influencing
factors in the prediction process, the benefits of early fault detection, the effectiveness of different
classifiers, the practical application of ML for predicting flaws in Python programs, and the advantages of
applying SFP [8,9]. Comparative analyses indicate that supervised models, particularly neural networks
and Support Vector Machines (SVM), generally outperform unsupervised models, although autoencoders
may be useful for detecting anomalies in large codebases [10].

Supervised Machine Learning in SFP

ML has found extensive application in SDP, and research indicates that ML algorithms yield different
outcomes across datasets, resulting in unequal defect prediction rates and no single model consistently
outperforming the others. Initial experiments comparing Naïve Bayes, K-Nearest Neighbor, neural
networks, and SVM using area under the curve (AUC) values identified the highest-performing classifiers
[11]. Research on feature selection has also shown that dimensionality reduction methods do not
significantly affect computational efficiency or prediction accuracy when neural networks are applied for
classification [12].

Further comparison of Logistic Regression, SVM, and Random Forest (RF) was made, and RF was
considered as the most accurate model, even better than SVM and by far better than Logistic Regression
[13]. Optimization-based investigations on dimensionality reduction with Principal Component Analysis
(PCA) and hyperparameter optimization with random search were able to note that K-Nearest Neighbor
had the highest accuracy, precision, and recall in all NASA Metric Data Programme (MDP) datasets, and
that Synthetic Minority Over-sampling Technique (SMOTE) was successful in class imbalance reduction
[14]. On the same note, the use of hyperparameter optimization tools of NDSGA-II and Hyperband
indicated that RF once again performed better and generalization was guaranteed by 10-fold cross-
validation [15].

Developments in ensemble methods can be seen in the dynamic classifier, which combines multiple
models and applies ant-colony optimization (ACO) to select features, achieving an accuracy of 94.13% and
improved minority-class classification with random oversampling [16]. Comparative analyses of RF,
XGBoost, SVM, and neural networks - enhanced through preprocessing steps such as SMOTE, PCA, and
RFE - identified XGBoost as the top performer in F1-score and receiver operating characteristic area under
the curve (ROC-AUC), while also providing interpretability through feature importance and SHAP analysis
[17]. Hybrid ensemble models combining multiple ML algorithms across PROMISE datasets (CM1, JM1,
KC1, PC1) demonstrated that a heterogeneous ensemble comprising K-Nearest Neighbor, GaussianNB,
SVM, and neural networks outperformed other hybrids in accuracy, recall, precision, F1-score, and ROC-
AUC, highlighting the advantages of hybridization for cross-project prediction [18].

The proposed classifier model will be a multi-classifier system that integrates the strengths of the most
successful classifiers. Using 16 publicly available datasets from the NASA MDP repository within the
PROMISE benchmark, experimental results confirm that significant improvements in SFP can be achieved
with the assistance of LGBM, XGBoost, and voting classifiers in a multi-classifier approach [19].

Unsupervised Machine Learning in SFP

ML methods are widely applied in SDP to classify modules as defective or non-defective. However, SDP
faces challenges such as redundant and correlated features, irrelevant attributes, missing values, and class
imbalance, all of which reduce prediction reliability. Both supervised and unsupervised ML approaches
have been used to address these issues, with unsupervised methods gaining increasing attention due to
their ability to operate without labeled data or manual feature engineering [20]. Unsupervised learning has
shown success in fields such as computer vision and natural language processing, and relevant techniques
- including Apriori, ECLAT, FP-growth, PCA, and clustering (hierarchical and partition-based) - have been
widely explored in recent SDP studies [21].

One of the most commonly used clustering strategies is K-means. An SDP model based on K-means and
similarity measures (Cosine, Jaccard, hybrid) combined with a neural network classifier achieved an
accuracy of 94.3% on object-oriented metrics [22]. Another hybrid method, which merged an autoencoder
with K-means, reduced dimensionality and clustering error, achieving 96% accuracy, 93% precision, and
87% recall on NASA PROMISE datasets, while also reducing computation time [23].

Ensemble Learning in SFP

Cureus Journal of Computer Science

2026 Aggarwal et al. Cureus J Comput Sci 3 : es44389-026-00021-7. DOI https://doi.org/10.7759/s44389-026-00021-7 2 of 14

javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)

SDP is important for improving software quality in addition to reducing the cost of tests by identifying the
defective modules during the early phase. There has been extensive experimentation with ensemble-based
methods because they allow numerous classifiers to be used to enhance the predictive robustness of the
method. A smart two-stage ensemble model based on RF, SVM, naïve Bayes, and artificial neural
networks with optimization of the parameters using an iterative method and a voting process has shown
better performance on seven NASA MDP datasets and has outperformed 20 state-of-the-art methods [24].

Additional comparative studies indicate that the ensemble and boosting-based models are still better than
the traditional classifiers. Python-written experiments indicated that XGBoost had the highest accuracy,
precision, recall, and F1-score on the Eclipse 2.0 dataset, and AdaBoost demonstrated a good performance
on a variety of measures [25]. On the same note, Bayes Net together with C4.5, Multi-Layer Perceptron and
RF applied to SDP exhibits better precision, recall, F1-score, and accuracy when combined in ensemble
setting than when applied as individual classifiers, which explains the success of ensemble learning in SDP
[26].

NASA software fault dataset is used to test the proposed approach after cleaning of data and correcting
the imbalance in the classes with the help of SMOTE; this dataset includes 21 software metrics. The model
with the highest accuracy is a finely adjusted RF classifier, which was modeled at 82.96%, with an F1 score
of 89.53. Comparative studies have demonstrated that the ensemble procedures, such as AdaBoost and
voting classifiers, provide high-quality predictive performance [27-29]. Despite the ability to model
complex patterns effectively, DL models have high hyperparameter tuning demands; this limitation limits
their practical use in SFP [30].

Deep Learning in SFP

The prediction of software faults has been a popular area of research in DL methods. To monitor progress
and detect faults in development with the assistance of a project management tool, this study used three
XP/TDD-oriented projects totaling over 472 KLOC. The data were used to evaluate five base classifiers and
their ensembles (RF) using Apache ActiveMQ and Eclipse data. The study also included DL techniques
such as Recurrent Neural Networks (RNNs), Long Short-Term Memory (LSTM), Bidirectional Long Short-
Term Memory (Bi-LSTM), and hybrid Convolutional Neural Network-Long Short-Term Memory (CNN-
LSTM) models, which have shown strong performance on large-scale data. Results from an n-way ANOVA
test confirmed that DL models are preferable to traditional ML techniques with 95% confidence for large-
scale fault prediction [31].

In [32], Bi-LSTM combined with random oversampling and SMOTE was tested on PROMISE datasets,
achieving accuracy scores of 90 to 99 and F-measures of 100, which exhibit high performance on Ant,
Camel, Ivy, JEdit, Log4j, and Xerces. Recent research has also highlighted that DL models have the capacity
to obtain syntactic and semantic information that is vital for accurate prediction. A performance
comparison of LSTM across seven public datasets in [33] revealed that LSTM outperformed deep belief
network, CNN, and RNN models in terms of precision, recall, and F1-score. Additionally, an ADASYN-
based ML process using SelectKBest and Min-max normalization, together with a deep neural network
classifier on the CM1 dataset, achieved an accuracy of 97.67 and high overall predictive performance [34].

Conventional SDP techniques rely on manual feature extraction and statistical models, which limits their
scalability to large datasets with high complexity. Recent literature shows that DL networks, including
CNNs, RNNs, LSTMs, and multilayer perceptrons, can automatically learn discriminative features and
achieve higher predictive performance. Experiments on publicly available datasets such as PROMISE and
BugHunter indicate that combining these techniques with feature selection and imbalance correction
strategies such as SMOTE results in models that are more accurate and resilient compared to traditional
ML approaches [35-38].

The imbalance of classes is also a significant issue in SDP, and in many cases, the learning results become
biased. To address this problem, data-level, algorithm-level, and ensemble-based methods such as
SMOTE, cost-sensitive learning, bagging, and boosting have been extensively studied [39-41]. SDP
involves several connected steps; therefore, investigators must correlate the quality of the dataset, the
models, the metrics used to evaluate the models, and the relevance to the purpose of the research, because
no single model is optimal in all settings [40]. Experimental results also support the idea that optimized
and ensemble-based ML models outperform traditional models in defect prediction [42-45].

Overall, the literature reviewed shows that no single ML method is consistently stable across all SFP
situations. Table 1 presents a critical analysis of the literature. Dataset characteristics, preprocessing
strategies, class imbalance, and evaluation metrics all play a major role in achieving high model
performance. Therefore, further studies should focus on standard experimental designs, explanatory
hybrid models, and the generalization of methods to other projects to improve the predictability and
usability of SFP tools. Comparative analysis indicates that feature engineering and validation strategies,
combined with enhancements in dataset quality, contribute more to SFP performance improvements than

Cureus Journal of Computer Science

2026 Aggarwal et al. Cureus J Comput Sci 3 : es44389-026-00021-7. DOI https://doi.org/10.7759/s44389-026-00021-7 3 of 14

javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)

classifier choice alone. While hybrid and DL models are reportedly more accurate, their scalability and
interpretability remain major challenges. Additionally, the lack of cross-project validation and real-time
deployment highlights a long-standing gap between research and industrial practice.

Analysis
Dimension

Key Observations from Literature Limitations Identified Research Implications

Datasets Mostly NASA and PROMISE datasets used Poor diversity, small size, legacy
Need validated, modern, cross-project
datasets

Prediction Type Heavy reliance on binary fault prediction
Disregards the types and
seriousness of faults

Multi-label and holistic prediction required

Feature Selection
Ensemble FS and metaheuristic FS enhance
performance

High computation, dataset
dependency

Exemplary and dynamic FS structures were
needed

Modelling
Approaches

Hybrid ML–DL models give better results than
single model

Excessive Complication, less clarity Improve accuracy with more explanation

Class Imbalance SMOTE is mostly preferred Noise and overfitting risks
State-of-the-art resampling and cost-
effective learning

Evaluation Metrics Accuracy is mostly used Misleading under imbalance Use MCC, G-mean

Cross-Project
Prediction

Good intra-project performance
The performance reduces among
projects

Requirement in Transfer learning and
adaptation

TABLE 1: In-depth analysis of the existing literature
DL: Deep Learning; MCC: Matthews Correlation Coefficient; ML: Machine Learning; SMOTE: Synthetic Minority Over-sampling Technique

The primary aim of this paper is to provide an extensive overview of the literature and existing
methodologies in SFP, which combines and harmonizes various different aspects related to SFP in
different dimensions of the topic during the last two years. The contributions of this paper are
summarized as follows:

This paper thoroughly summarizes recent SFP literature published in IEEE, ACM, Springer, and
ScienceDirect, giving an up-to-date overview of ML developments in SFP between 2023 and 2025.

A comprehensive literature classification of SFP is done in terms of datasets, type of prediction, feature
selection methods, modelling paradigms, and class imbalance management methods.

The ML classifiers, benchmark datasets, and evaluation metrics are thoroughly analyzed, showing the
most important factors that affect the performance of SFP models and how to choose ML models based on
the aspects of data-related, model-related and goal-oriented.

Key challenges at the data, model, DL, and universal levels are found, and solutions and future research
directions are provided so as to assist in the development of robust and generalizable SFP models.

Review
Methodology
The proposed study follows a systematic literature review methodology, adhering to the reporting
protocols outlined in the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA).
Using this approach, we specifically examine and analyze the usefulness of ML algorithms in SFP. This
involves identifying relevant studies, developing a search strategy, and applying eligibility criteria. A
systematic literature review can be described as a structured data-gathering process focused on a specific
subject, designed to ensure that the collected data meets established standards of relevance and quality
while directly addressing the guiding research questions. In this process, published research such as
conference proceedings, journal articles, book chapters, and other scholarly works is thoroughly examined
to ensure the completeness and comprehensiveness of the review [6].

Cureus Journal of Computer Science

2026 Aggarwal et al. Cureus J Comput Sci 3 : es44389-026-00021-7. DOI https://doi.org/10.7759/s44389-026-00021-7 4 of 14

javascript:void(0)

FIGURE 1: PRISMA literature review schematic
PRISMA: Preferred Reporting Items for Systematic Reviews and Meta-Analyses

PRISMA aims at selecting the most suitable papers to analyse. Hence, its recommendations offer a general
structure for systematic reviews, meta-analysis, and reporting [9]. There are four fundamental stages in
this methodology, and they include the identification phase, the screening phase, the eligibility phase, and
the inclusion phase. These stages and processes are outlined in Figure 1. The figure provides a graphical
summary of a systematic review in a well-organized format, showing the papers, the number of records
found, included, and rejected at each phase, and an explanation of why records were rejected.

Identification Criteria

This methodology aims to investigate how the various fault prediction algorithms can be applied to
address issues of interpretability, absence of domain knowledge, and data quality. The primary aim is to
increase the efficiency of software fault algorithms, as well as their reliability, particularly when it comes
to algorithms implementing AI-based approaches such as ML and DL. Some of the issues in software
systems that these techniques are expected to predict and identify include syntax, logical, run-time,
design, and requirements faults.

Search Strategy Criteria

Springer, ACM, IEEE Xplore Digital Library, and ScienceDirect databases that were used to extract the
research publications were screened by using the criteria. Peer reviewed publications on arbitrary years of
publication of 2023-2025 were sampled to identify material related to software fault detection algorithms
through the use of artificial intelligence. The search query was ((software fault prediction OR software
defect prediction OR software error prediction) AND (artificial intelligence OR AI OR machine learning OR
neural network)).

Eligibility Criteria

Cureus Journal of Computer Science

2026 Aggarwal et al. Cureus J Comput Sci 3 : es44389-026-00021-7. DOI https://doi.org/10.7759/s44389-026-00021-7 5 of 14

https://assets.cureusjournals.com/artifacts/upload/figure/file/39695/lightbox_78f9f030fcc811f09a766b24d67455ef-f-1.png
javascript:void(0)
javascript:void(0)

The database was searched to retrieve research papers, which were divided based on the inclusion and
exclusion criteria. The software fault detection algorithms published between 2023 and 2025 were
thoroughly reviewed. Table 2 presents the inclusion and exclusion criteria.

Criteria Decision

The published studies in the given timeframe of the review (e.g., 2023-2025) are considered to offer the current relevance. Inclusion

Studies should be directly coupled with the prediction of the software defects/faults or improve SFP models. Inclusion

Only peer-reviewed journal articles are considered. Inclusion

Articles in other languages other than English are filtered to ensure interpretability. Exclusion

Research which does not specialize in software fault prediction, or machine learning Exclusion

TABLE 2: Inclusion and exclusion criteria for PRISMA
PRISMA: Preferred Reporting Items for Systematic Reviews and Meta-Analyses; SFP: Software Fault Prediction

Discussion and analysis
Paper Collection Methodology and Results

The articles were selected from IEEE Xplore, Springer, ACM, and ScienceDirect employing the search
query (Software Fault Detection, Machine Learning, Classification, and NASA PROMISE), and a total of
350 papers were retrieved from these sources. The papers that were initially accessed were further
screened on the basis of eligibility and non-eligibility criteria.

Figure 2 highlights the continued applicability of SFP across various ML methods. The number of primary
studies conducted in this field is shown on the y-axis, while the years of study are displayed on the x-axis.
It is worth noting that research publications peaked in 2025, with around 17 studies, whereas 2023 had the
fewest, with 12 studies in this field.

FIGURE 2: Temporal distribution of ML papers
ML: Machine Language

The articles were selected from IEEE Xplore, Springer, ACM, and ScienceDirect using the search query
(Software Fault Detection, Machine Learning, Classification, and NASA PROMISE), and a total of 350
papers were retrieved from these sources. The papers initially accessed were then further screened based
on eligibility and non-eligibility criteria. The systematic methodological selection of pertinent studies
provides a high level of coverage of existing SFP methods. Based on the gathered literature, the
classification of the most commonly used classifiers in SFP models is analyzed in the following section,
and their effectiveness under various experimental conditions is investigated.

Popular Classifiers Used in SFP model

Cureus Journal of Computer Science

2026 Aggarwal et al. Cureus J Comput Sci 3 : es44389-026-00021-7. DOI https://doi.org/10.7759/s44389-026-00021-7 6 of 14

javascript:void(0)
javascript:void(0)
https://assets.cureusjournals.com/artifacts/upload/figure/file/39738/lightbox_b660fa80eb0811f089ff2b3125a24b0a-2-fig.png

The researchers used more than 27 techniques and algorithms in the selected primary studies. These
techniques were employed to compare and enhance prediction performance. All applied techniques are
categorized into 10 classes in Figure 3. The analysis of the most widely used techniques for SFP is shown
in Figure 4, which indicates that 76% of the techniques fall under Bayesian, decision tree, neural, kernel-
based, and ensemble groups, indicating their strong and consistent performance.

FIGURE 3: Techniques used in previous studies
ANN: Artificial Neural Network; BBN: Bayesian Belief Network; BN: Bayesian Network; KNN: K-Nearest Neighbors;
LDA: Linear Discriminant Analysis; LR: Logistic Regression; LSSVM: Least Squares Support Vector Machine; MLP:
Multi-Layer Perceptron; NB: Naive Bayes; PCA: Principal Component Analysis; RBF: Radial Basis Function; RF:
Random Forest; RUS: Random Under-Sampling; SMOTE: Synthetic Minority Over-sampling Technique; SQM:
Software Quality Management; SVM: Support Vector Machine

FIGURE 4: Distribution of techniques

Despite the different classifiers that have been suggested in SFP, the performance of each classifier varies

Cureus Journal of Computer Science

2026 Aggarwal et al. Cureus J Comput Sci 3 : es44389-026-00021-7. DOI https://doi.org/10.7759/s44389-026-00021-7 7 of 14

javascript:void(0)
javascript:void(0)
https://assets.cureusjournals.com/artifacts/upload/figure/file/38024/lightbox_042e61e0fcc911f0a193c592efdd74d0-F4.png
https://assets.cureusjournals.com/artifacts/upload/figure/file/38026/lightbox_5d3fbe50fcc911f096f02fe2dd189315-F3.png

with the datasets and metrics that are used. Therefore, the discussion of commonly used datasets and
metrics should be provided to make any meaningful comparisons of SFP models.

Dataset and Metrics

The authors refer to different software engineering repositories and datasets to create SFP and SDP
models. Such databases are classified as public and private. Public datasets are free of charge, whereas
private datasets are not readily available. These datasets often contain software metrics (features) and
fault labels (target values) for all modules (e.g., class, file, function). The most commonly used datasets
are NASA MDP, PROMISE, Eclipse, and AEEEM. In SFP, metrics serve as measurable indicators that help
ML models identify patterns associated with defect-prone modules, thereby enabling early detection and
improving overall software reliability. The metrics used in previous studies include Product metrics,
Process metrics, and Object-Oriented metrics. Overall, during the analysis, it was observed that among all
datasets used in SFP, NASA and PROMISE are the most widely used. The analysis of the most widely used
datasets is shown in Figure 5. Furthermore, it was observed that among all metrics used in SFP, Product
metrics are the most commonly used. The analysis of the most widely used metrics for SFP is shown in
Figure 6.

FIGURE 5: Distribution of dataset

Cureus Journal of Computer Science

2026 Aggarwal et al. Cureus J Comput Sci 3 : es44389-026-00021-7. DOI https://doi.org/10.7759/s44389-026-00021-7 8 of 14

javascript:void(0)
javascript:void(0)
https://assets.cureusjournals.com/artifacts/upload/figure/file/38027/lightbox_e19131a0d3d111f082a40d6797eb77ff-fig-5.png

FIGURE 6: Distribution of metrics

Although datasets and software metrics have been the building blocks of SFP models, their usefulness
should be tested using suitable evaluation measures. As a result, the choice of appropriate performance
measurements is vital in the context of the truthful evaluation and comparison of the predictive
performance of SFP models.

Evaluation Metrics

Researchers have used a number of performance measures to evaluate the workability of used or proposed
defect prediction methods. However, most performance measures are founded on the components of a
confusion matrix. Figure 7 defines the different metrics of evaluation used in SFP. During the analysis, it
has been observed that some of the common measures used to determine the performance of defect
prediction models include F-measure, area under ROC curve (AUC), recall, precision, and accuracy. Figure
8 shows that 89% of the studies of choice usually do. The other measures that have been employed to
measure the performance of prediction models are the Matthews correlation coefficient, specificity,
decision cost, G-mean, precision-recall curve, kappa statistic, and standard deviation error among other
measures.

Cureus Journal of Computer Science

2026 Aggarwal et al. Cureus J Comput Sci 3 : es44389-026-00021-7. DOI https://doi.org/10.7759/s44389-026-00021-7 9 of 14

https://assets.cureusjournals.com/artifacts/upload/figure/file/38028/lightbox_61d38390d3d211f08ffcdf652bc2346d-fig-6.png
javascript:void(0)
javascript:void(0)

FIGURE 7: Evaluation metrics
AUC: Area Under the Curve; FN: False Negative; FP: False Positive; FPR: False Positive Rate; MCC: Matthews
Correlation Coefficient; PR: Precision-Recall; ROC: Receiver Operating Characteristic; TN: True Negative; TP: True
Positive; TPR: True Positive Rate

Cureus Journal of Computer Science

2026 Aggarwal et al. Cureus J Comput Sci 3 : es44389-026-00021-7. DOI https://doi.org/10.7759/s44389-026-00021-7 10 of 14

https://assets.cureusjournals.com/artifacts/upload/figure/file/38029/lightbox_fa6dd420d3d211f0afe38f01dbd07811-fig-7.png

FIGURE 8: Distribution of evaluation metrics
MCC: Matthews Correlation Coefficient; ROC-AUC: Receiver Operating Characteristic-Area Under the Curve

Even though the evaluation metrics can offer a quantitative view or analysis towards the effectiveness of
SFP models, the reported performance is also affected by a number of underlying factors that affect model
reliability and generalization. Thus, it is critical to review the key factors that influence the performance
of the SFP model.

Key factors affecting SFP model performance
The performance of SFP models is shaped by several interrelated factors that influence both model
learning and generalization.

a) Overfitting and noisy dataset undermine reliability by causing the model to learn project-specific noise
rather than meaningful defect patterns.

b) The choice and quality of software metrics such as complexity, coupling, and process measures directly
affect predictive strength, as irrelevant or redundant metrics dilute useful information. Variations in
software parameters, including project domain and development practices, further impact a model’s
ability to generalize across projects.

c) Evaluation methodology also plays a critical role; weak validation practices or imbalanced datasets can
lead to misleading performance estimates, whereas robust methods like k-fold or cross-project validation
produce more trustworthy results.

d) Among all factors, feature selection shows the strongest positive influence, as removing redundant and
irrelevant features reduces overfitting and consistently improves accuracy, recall, and F-measure across
studies.

Once the factors influencing the performance of SFP have been analyzed, researchers are then able to
select machine learning models that are rationally selected in accordance to characteristics of datasets,
model-based and goal-oriented.

Model selection criteria
According to the comparative analysis of the existing literature, the selection of a suitable ML model for
SFP is mainly based on the following three major factors.

Cureus Journal of Computer Science

2026 Aggarwal et al. Cureus J Comput Sci 3 : es44389-026-00021-7. DOI https://doi.org/10.7759/s44389-026-00021-7 11 of 14

https://assets.cureusjournals.com/artifacts/upload/figure/file/38030/lightbox_72f4dc70d3d511f08faa9983423ea439-fig-8.png

Data-related considerations: supervised learning is applied when there are small to moderately sized,
labeled datasets; however, where unlabeled data are available, unsupervised learning can be used; deep
learning models can be effectively used when there are extensive datasets available.

Model factors: Ensemble learning methods enhance prediction resilience by integrating several base
learners, but DL models represent complex and nonlinear connections between the software metrics at the
cost of higher computational expenditure.

Goal-related aspects: Supervised learning is mostly used to classify faults and predict defects precisely and
unsupervised learning is used to detect the modules of the computer software that may be prone to fault
in advance.

The model selection is also dictated by the computational resources and training complexity, especially in
the adoption of DL models.

Challenges and its solutions
We classify these challenges into four broad categories, namely, model, data, DL, and universal challenges,
and summarize the solutions to these problems that are present in the extant literature. The various
challenges and its solutions are described in Table 3.

Category Challenges Solutions

Model
Challenges

Overfitting, Feature selection difficulty, Sequence models
sensitive to hyperparameters

Apply meta-heuristic feature selection, Utilize self-attention mechanisms
and optimized LSTMs

Data
Challenges

Heterogeneous and small datasets, Limited defect samples and
class imbalance, Noisy instances and incomplete code
fragments

Use SMOTE, resampling and models suitable for small-data learning,
Manual verification of defect labels; heuristic extraction of incomplete code

Deep
Learning
Challenges

High dependency on large labeled datasets, Difficulty in
hyperparameter optimization, Need for high-performance
hardware, Black-box nature of neural networks

Expand datasets, Apply automated hyperparameter optimization
(Bayesian, grid search), Utilize GPUs/TPUs or cloud-based computation,
Integrate explainability tools (SHAP, LIME)

Universal
Challenges

Software quality and security concerns, Interpretability issues,
Generalizability

Incorporate comments, commit logs and metadata, Improve feature
learning via embeddings; use cost-sensitive learning Choose diverse,
balanced datasets; evaluate across benchmarks

TABLE 3: Various challenges faced in SFP with its solutions
GPUs: Graphics Processing Units; LIME: Local Interpretable Model-agnostic Explanations; LSTMs: Long Short-Term Memory; SHAP: SHapley Additive
exPlanations; SMOTE: Synthetic Minority Over-sampling TEchnique; SFP: Software Fault Prediction; TPUs: Tensor Processing Units

Conclusions
The current review provided an extensive analysis of the recent progress (2023-2025) of SFP through the
use of machine learning, ensemble, and DL techniques. In the literature, it is evident that SFP will play a
critical role in saving costs of software, as well as increasing quality, by detecting early modules likely to
cause defects. It is revealed in the analysis that none of the models is always better than the rest, rather
the quality of the data used, preprocessing techniques, feature selection, dealing with class imbalances,
and the evaluation strategies all play a significant role in determining the performance of predictions.
Hybrid and ensemble methods, especially those using tree-based learners and gradient boosting, are more
accurate, and DL models have potential when using large and complex data, but do not easily support
interpretability and scaling. Comparative studies show that SVMs and RF always score high in most cases
on different sets of data. In general, the results underline the importance of more empirical studies to
overcome current limitations in SFP and integrate cutting-edge experimental design, interpretable and
comprehensible models, and workable datasets as opposed to focusing on the selection of classifiers, thus
the necessity to close the gap between the academic research sphere and the world of feasible software
engineering applications. Overall, this review gives a complete idea of the latest SFP trends and a
background to stack the research directions in the future in terms of software quality assurance.

Additional Information
Author Contributions
All authors have reviewed the final version to be published and agreed to be accountable for all aspects of

Cureus Journal of Computer Science

2026 Aggarwal et al. Cureus J Comput Sci 3 : es44389-026-00021-7. DOI https://doi.org/10.7759/s44389-026-00021-7 12 of 14

javascript:void(0)

the work.

Concept and design: Ruchika Aggarwal , Kamaljit Kaur

Acquisition, analysis, or interpretation of data: Ruchika Aggarwal , Kamaljit Kaur

Drafting of the manuscript: Ruchika Aggarwal , Kamaljit Kaur

Critical review of the manuscript for important intellectual content: Ruchika Aggarwal , Kamaljit
Kaur

Supervision: Kamaljit Kaur

Disclosures
Conflicts of interest: In compliance with the ICMJE uniform disclosure form, all authors declare the
following: Payment/services info: All authors have declared that no financial support was received from
any organization for the submitted work. Financial relationships: All authors have declared that they
have no financial relationships at present or within the previous three years with any organizations that
might have an interest in the submitted work. Other relationships: All authors have declared that there
are no other relationships or activities that could appear to have influenced the submitted work.

Data Availability Statements
The datasets (and/or code) supporting this study are available from the corresponding author upon
reasonable request.

References
1. Mustaqeem M, Alam M, Mustajab S, Alshanketi F, Alam S, Shuaib M: Comprehensive bibliographic survey and

forward-looking recommendations for software defect prediction: datasets, validation methodologies,
prediction approaches, and tools. IEEE Access. 2025, 13:866-903. 10.1109/access.2024.3517419

2. Khalid A, Badshah G, Ayub N, Shiraz M, Ghouse M: Software defect prediction analysis using machine learning
techniques. Sustainability. 2023, 15:5517. 10.3390/su15065517

3. Zaidi HZ, Ullah U, Arshad M, Aljuaid H, Rauf MA, Sarwar N, Sajid R: Machine learning approaches for software
defect prediction. Applied Computational Intelligence and Soft Computing. 2025, 2025:1-29.
10.1155/acis/7933078

4. Li C, Li D, Li H, Wong WE, Zhao M: A systematic review of learning-based software defect prediction. Journal
of Internet Technology. 2025, 26:501-511. 10.70003/160792642025072604009

5. Kumar S, Awasthi S: Artificial intelligence approaches for predicting software defects: a comprehensive review.
International Journal of Research and Development in Applied Science and Engineering (IJRDASE). 2025, 25:1-
4.

6. Ndlovu L, Cossa B, Makokoe C, et al.: Software fault detection algorithms using artificial intelligence: a review
and classification. 2024 International Conference on Electrical, Computer and Energy Technologies (ICECET),
Sydney, Australia. 2024, 1-6. 10.1109/ICECET61485.2024.10698379

7. Kumar R, Kaur K: A comparative analysis of techniques, datasets, feature selection methods, and evaluation
metrics in software fault prediction. International Journal of Emerging Science and Engineering (IJESE). 2025,
13:25-41.

8. Rafique A, Bhatti S: Machine learning techniques for software fault prediction: A distinctive systematic
literature review. International Conference on Engineering, Natural Sciences, and Technological Developments
(ICENSTED 2024). 2024, 855-860.

9. Kaur G, Pruthi J, Gandhi P: Machine learning based Software Fault Prediction models. Karbala International
Journal of Modern Science. 2023, 9:9. 10.33640/2405-609x.3297

10. Pathak H: AI models for software defect prediction: comparative study. Innovative Journal of Applied Science.
2025, 2:28. 10.70844/ijas.2025.2.28

11. Sunil A, Sahu RK, Karsoliya S: Software defect prediction using supervised machine learning: a systematic
literature review. International Journal of Advanced Research and Multidisciplinary Trends (IJARMT). 2025,
2:80-95.

12. Cauvery G, Suresh D: Software defect prediction using machine learning techniques . Data Analytics and
Artificial Intelligence. 2023, 3:30-33.

13. Sushma, Gr P: Software bug prediction using supervised machine learning algorithms. International Journal of
Scientific Development and Research (IJSDR). 2023, 8:358-364.

14. Nuruddin Siswantoro MZF, Yuhana UL: Software defect prediction based on optimized machine learning
models: a comparative study. Teknika. 2023, 12:166-172. 10.34148/teknika.v12i2.634

15. Elshamy N, AbouElenen A, Elmougy S: Automatic detection of software defects based on machine learning.
International Journal of Advanced Computer Science and Applications. 2023, 14:353-364.
10.14569/ijacsa.2023.0140340

16. Kaliraj S, Sahasranth VGP, Sivakumar V: A holistic approach to software fault prediction with dynamic
classification. Automated Software Engineering. 2024, 31:70. 10.1007/s10515-024-00467-4

17. Durga, SinhaA: Enhancing software reliability through intelligent fault prediction using machine learning .
International Journal of Scientific Research in Computer Science Engineering and Information Technology.
2025, 11:945-956. 10.32628/cseit25113376

Cureus Journal of Computer Science

2026 Aggarwal et al. Cureus J Comput Sci 3 : es44389-026-00021-7. DOI https://doi.org/10.7759/s44389-026-00021-7 13 of 14

https://dx.doi.org/10.1109/access.2024.3517419
https://dx.doi.org/10.1109/access.2024.3517419
https://dx.doi.org/10.3390/su15065517
https://dx.doi.org/10.3390/su15065517
https://dx.doi.org/10.1155/acis/7933078
https://dx.doi.org/10.1155/acis/7933078
https://dx.doi.org/10.70003/160792642025072604009
https://dx.doi.org/10.70003/160792642025072604009
https://ijrdase.com/ijrdase/wp-content/uploads/2025/06/Artificial-Intelligence-Approaches-for-Predicting-Software-Defects-A-Comprehensive-Review-Sanjay-Sameer.pdf
https://dx.doi.org/10.1109/ICECET61485.2024.10698379
https://dx.doi.org/10.1109/ICECET61485.2024.10698379
https://www.researchgate.net/profile/Rajinder-Kumar-29/publication/394161299_A_Comparative_Analysis_of_Techniques_Datasets_Feature_Selection_Methods_and_Evaluation_Metrics_in_Software_Fault_Prediction/links/688ba9fc8918f874a5c2ce1a/A-Comparative-Analysis-of-Techniques-Datasets-Feature-Selection-Methods-and-Evaluation-Metrics-in-Software-Fault-Prediction.pdf
https://www.researchgate.net/profile/Aleena-Rafique-4/publication/383610734_Machine_Learning_Techniques_for_Software_Fault_Prediction_A_Distinctive_Systematic_Literature_Review/links/66d3e7edb1606e24c2ac8b4a/Machine-Learning-Techniques-for-Software-Fault-Prediction-A-Distinctive-Systematic-Literature-Review.pdf
https://dx.doi.org/10.33640/2405-609x.3297
https://dx.doi.org/10.33640/2405-609x.3297
https://dx.doi.org/10.70844/ijas.2025.2.28
https://dx.doi.org/10.70844/ijas.2025.2.28
https://www.ijarmt.com/index.php/j/article/view/355
https://mail.stjosephcollege.edu.in/assets/doc/NAAC_DOC/Criteria_3/Rest_Papers/3_3_2_21_22_Rest_software.pdf
http://www.ijsdr.org/papers/IJSDR2310062.pdf
https://dx.doi.org/10.34148/teknika.v12i2.634
https://dx.doi.org/10.34148/teknika.v12i2.634
https://dx.doi.org/10.14569/ijacsa.2023.0140340
https://dx.doi.org/10.14569/ijacsa.2023.0140340
https://dx.doi.org/10.1007/s10515-024-00467-4
https://dx.doi.org/10.1007/s10515-024-00467-4
https://dx.doi.org/10.32628/cseit25113376
https://dx.doi.org/10.32628/cseit25113376

18. Kumar H, Saxena V: Software defect prediction using hybrid machine learning techniques: a comparative
study. Journal of Software Engineering and Applications. 2024, 17:155-171. 10.4236/jsea.2024.174009

19. Gupta N, Sinha RR: A novel developed supervised machine learning system for classification and prediction of
software faults using NASA dataset. International Journal on Recent and Innovation Trends in Computing and
Communication. 2023, 11:715-729. 10.17762/ijritcc.v11i10s.7710

20. Batool A: Software defect prediction using clustering: a comprehensive literature review. International Journal
of Computations, Information and Manufacturing (IJCIM). 2023, 3:57-65.

21. Bojja RR: A comparative study of supervised and unsupervised learning approaches. International
Multidisciplinary Research Journal Reviews (IMRJR). 2025, 2:80-88. 10.17148/IMRJR.2025.020411

22. Arya A, Malik SK: Software fault prediction using K-mean-based machine learning approach . International
Journal of Performability Engineering. 2023, 19:133-133. 10.23940/ijpe.23.02.p6.133143

23. Arasteh B, Golshan S, Shami S, Kiani F: Sahand: a software fault-prediction method using autoencoder neural
network and K-means algorithm. Journal of Electronic Testing. 2024, 40:229-243. 10.1007/s10836-024-06116-8

24. Ali M, Mazhar T, Arif Y, et al.: Software defect prediction using an intelligent ensemble-based model . IEEE
Access. 2024, 12:20376-20395. 10.1109/access.2024.3358201

25. Sharma A, Amrendra K, Ranjan P: Comparative analysis of ensemble classifiers over machine learning
classifiers for early software quality prediction. Proceedings of the Recent Advances in Artificial Intelligence
for Sustainable Development (RAISD 2025). Atlantis Press, The Netherlands; 2025. 196:351-366. 10.2991/978-
94-6463-787-8_29

26. Mehta A, Batra I, Fergina A: Boosting software fault prediction accuracy with ensemble learning. Engineering
Proceedings. 2025, 107:63. 10.3390/engproc2025107063

27. Thomas NS, Kaliraj S: An improved and optimized random forest based approach to predict the software faults .
SN Computer Science. 2024, 5:530. 10.1007/s42979-024-02764-x

28. Siddika A, Begum M, Al Farid F, Uddin J, Karim HA: Enhancing software defect prediction using ensemble
techniques and diverse machine learning paradigms. Eng. 2025, 6:161. 10.3390/eng6070161

29. Ali M, Mazhar T, Al-Rasheed A, Shahzad T, Yasin Ghadi Y, Amir Khan M: Enhancing software defect
prediction: a framework with improved feature selection and ensemble machine learning. PeerJ Computer
Science. 2024, 10:e1860. 10.7717/peerj-cs.1860

30. Mohammed A, Kora R: A comprehensive review on ensemble deep learning: Opportunities and challenges.
Journal of King Saud University Computer and Information Sciences. 2023, 35:757-774.
10.1016/j.jksuci.2023.01.014

31. Borandag E: Software fault prediction using an RNN-based deep learning approach and ensemble machine
learning techniques. Applied Sciences. 2023, 13:1639. 10.3390/app13031639

32. Khleel NAA, Nehéz K: Software defect prediction using a bidirectional LSTM network combined with
oversampling techniques. Cluster Computing. 2024, 27:3615-3638. 10.1007/s10586-023-04170-z

33. Phuong HTM, Ngan DTK, Binh NT: A comparative study of deep learning techniques in software fault
prediction. The University of Danang - Journal of Science and Technology. 2024, 22:1-5. 10.31130/ud-
jst.2024.266e

34. Gadiraju RK: A novel machine learning method for fault prediction and reliability in software systems .
International Journal of Scientific Research in Science, Engineering and Technology. 2025, 12:1226-1238.
10.32628/ijsrset2512163

35. Liang Q: Research on software defect prediction model based on deep learning. Highlights in Science,
Engineering and Technology. 2024, 122:23-29. 10.54097/y0w76b47

36. Alkaberi W, Assiri F: Predicting the number of software faults using deep learning . Engineering, Technology &
Applied Science Research. 2024, 14:13222-13231. 10.48084/etasr.6798

37. Phung K, Aydin ME, Ogunshile E: Deep learning architectures for software fault prediction: the impact of
error-type metrics and class imbalance. Concurrency and Computation: Practice and Experience. 2026,
38:e70472. 10.1002/cpe.70472

38. Modanlou Jouybari M, Tajary A, Fateh M, Abolghasemi V: A novel deep neural network structure for software
fault prediction. PeerJ Computer Science. 2024, 10:e2270. 10.7717/peerj-cs.2270

39. Mehta A, Kaur N, Kaur A: A review of software fault prediction techniques in class imbalance scenarios .
International Journal of Performability Engineering. 2025, 21:123-130. 10.23940/ijpe.25.03.p1.123130

40. Zhang Y, Liu N: Investigation and research on several key issues of software defect prediction. IET Software.
2025, 2025:1-28. 10.1049/sfw2/6615496

41. Raj A, Chavan DM, Agarwal P: Enhancing software fault prediction through data balancing techniques and
machine learning. IAES International Journal of Artificial Intelligence (IJ-AI). 2025, 14:4787-4801.
10.11591/ijai.v14.i6.pp4787-4801

42. Tufail S, Riggs H, Tariq M, Sarwat AI: Advancements and challenges in machine learning: a comprehensive
review of models, libraries, applications, and algorithms. Electronics. 2023, 12:1789.
10.3390/electronics12081789

43. Kumar A, Ansari MA: The systematic review study of significance of machine learning techniques in software
defect prediction. International Journal of Engineering and Technology Research (IJETR). 2024, 9:10-25.

44. Kumar SA, Prasanna BS, Mani AG, Deepika G, Reddy BVAK: Software bug prediction using machine learning.
International Journal of Scientific Research in Engineering and Management (IJSREM). 2024, 08:1-5.
10.55041/ijsrem31425

45. Lafi M, Farhan KA, Abusukhon A: Machine learning model for fault prediction in object-oriented systems. 2025
12th International Conference on Information Technology (ICIT), Amman, Jordan. 2025, 644-646.
10.1109/ICIT64950.2025.11049103

Cureus Journal of Computer Science

2026 Aggarwal et al. Cureus J Comput Sci 3 : es44389-026-00021-7. DOI https://doi.org/10.7759/s44389-026-00021-7 14 of 14

https://dx.doi.org/10.4236/jsea.2024.174009
https://dx.doi.org/10.4236/jsea.2024.174009
https://dx.doi.org/10.17762/ijritcc.v11i10s.7710
https://dx.doi.org/10.17762/ijritcc.v11i10s.7710
https://journals.gaftim.com/index.php/ijcim/article/view/283
https://dx.doi.org/10.17148/IMRJR.2025.020411
https://dx.doi.org/10.17148/IMRJR.2025.020411
https://dx.doi.org/10.23940/ijpe.23.02.p6.133143
https://dx.doi.org/10.23940/ijpe.23.02.p6.133143
https://dx.doi.org/10.1007/s10836-024-06116-8
https://dx.doi.org/10.1007/s10836-024-06116-8
https://dx.doi.org/10.1109/access.2024.3358201
https://dx.doi.org/10.1109/access.2024.3358201
https://dx.doi.org/10.2991/978-94-6463-787-8_29
https://dx.doi.org/10.2991/978-94-6463-787-8_29
https://dx.doi.org/10.3390/engproc2025107063
https://dx.doi.org/10.3390/engproc2025107063
https://dx.doi.org/10.1007/s42979-024-02764-x
https://dx.doi.org/10.1007/s42979-024-02764-x
https://dx.doi.org/10.3390/eng6070161
https://dx.doi.org/10.3390/eng6070161
https://dx.doi.org/10.7717/peerj-cs.1860
https://dx.doi.org/10.7717/peerj-cs.1860
https://dx.doi.org/10.1016/j.jksuci.2023.01.014
https://dx.doi.org/10.1016/j.jksuci.2023.01.014
https://dx.doi.org/10.3390/app13031639
https://dx.doi.org/10.3390/app13031639
https://dx.doi.org/10.1007/s10586-023-04170-z
https://dx.doi.org/10.1007/s10586-023-04170-z
https://dx.doi.org/10.31130/ud-jst.2024.266e
https://dx.doi.org/10.31130/ud-jst.2024.266e
https://dx.doi.org/10.32628/ijsrset2512163
https://dx.doi.org/10.32628/ijsrset2512163
https://dx.doi.org/10.54097/y0w76b47
https://dx.doi.org/10.54097/y0w76b47
https://dx.doi.org/10.48084/etasr.6798
https://dx.doi.org/10.48084/etasr.6798
https://dx.doi.org/10.1002/cpe.70472
https://dx.doi.org/10.1002/cpe.70472
https://dx.doi.org/10.7717/peerj-cs.2270
https://dx.doi.org/10.7717/peerj-cs.2270
https://dx.doi.org/10.23940/ijpe.25.03.p1.123130
https://dx.doi.org/10.23940/ijpe.25.03.p1.123130
https://dx.doi.org/10.1049/sfw2/6615496
https://dx.doi.org/10.1049/sfw2/6615496
https://dx.doi.org/10.11591/ijai.v14.i6.pp4787-4801
https://dx.doi.org/10.11591/ijai.v14.i6.pp4787-4801
https://dx.doi.org/10.3390/electronics12081789
https://dx.doi.org/10.3390/electronics12081789
https://iaeme.com/Home/article_id/IJETR_09_01_002
https://dx.doi.org/10.55041/ijsrem31425
https://dx.doi.org/10.55041/ijsrem31425
https://dx.doi.org/10.1109/ICIT64950.2025.11049103
https://dx.doi.org/10.1109/ICIT64950.2025.11049103

	Machine Learning Approaches in Software Fault Prediction: A Review
	Abstract
	Introduction And Background
	Literature review
	TABLE 1: In-depth analysis of the existing literature

	Review
	Methodology
	FIGURE 1: PRISMA literature review schematic
	TABLE 2: Inclusion and exclusion criteria for PRISMA

	Discussion and analysis
	FIGURE 2: Temporal distribution of ML papers
	FIGURE 3: Techniques used in previous studies
	FIGURE 4: Distribution of techniques
	FIGURE 5: Distribution of dataset
	FIGURE 6: Distribution of metrics
	FIGURE 7: Evaluation metrics
	FIGURE 8: Distribution of evaluation metrics

	Key factors affecting SFP model performance
	Model selection criteria
	Challenges and its solutions
	TABLE 3: Various challenges faced in SFP with its solutions

	Conclusions
	Additional Information
	Author Contributions
	Disclosures
	Data Availability Statements

	References

